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Abstract: We prove some new dynamic inequalities of the Gronwall-Bellman—Pachpatte type on
time scales. Our results can be used in analyses as useful tools for some types of partial dynamic
equations on time scales and in their applications in environmental phenomena and physical and
engineering sciences that are described by partial differential equations.
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1. Introduction

A time scale T is an arbitrary nonempty closed subset of the set of real numbers R.
Throughout the article, we assume that T has the topology that it inherits from the standard
topology on R. We define the forward jump operator o : T — T for any T € T by

o(t):=inf{s € T:s > 1},
and the backward jump operator p : T — T for any T € T by
p(t) :=sup{s € T:s < 1}.

In the preceding two definitions, we set inf @ = sup T (i.e., if T is the maximum of T,
then 0(7) = 7) and sup @ = inf T (i.e., if 7 is the minimum of T, then p(7) = T), where @
denotes the empty set.

The set T*is introduced as follows: If T has a left-scattered maximum ¢7, then T* =
T — {¢1}; otherwise, T* = T.

The interval [0, 9] in T is defined by

0,0]r ={CeT:0<¢ <8}

We define the open intervals and half-closed intervals similarly.

Assume x : T — R is a function and & € T*. Then, x*(&) € R is said to be the delta
derivative of x at ¢ if, for any € > 0, there exists a neighborhood U of ¢ such that, for every
s € U, we have

|[X(0(8)) = x()] = X2 (@)[e(§) = s]| <ele(2) —sl.

Moreover, x is said to be delta-differentiable on T* if it is delta differentiable at every
g eTx.

In what follows, we will need the set Ty, which is derived from the time scale T as
follows: if T has a right-scattered minimum m, then Tyc = T — {m}. Otherwise, T;c = T.
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We introduce the nabla derivative of a function f : T — R at a point t € Ty as follows.

Let f : T — R be a function and let t € T,. We define fV(t) as the real number
(provided that it exists) with the property that, for any € > 0, there exists a neighborhood
Noft(i.e, N= (t—9,t+ ) for some é > 0) such that

|[FP() = £(5)] = Y (B)[o(t) —s| <elp(t) —s| forevery se€N.

We say that £V (t) is the nabla derivative of f at t.

Time scale calculus with the objective to unify discrete and continuous analysis was
introduced by S. Hilger [1]. For additional subtleties on time scales, we refer the reader to
the books by Bohner and Peterson [2,3].

Gronwall-Bellman-type inequalities, which have many applications in qualitative
and quantitative behavior, have been developed by many mathematicians, and several
refinements and extensions have been applied to the previous results; we refer the reader
to the works [4-14]. For other types of dynamic inequalities on time scales, see [15-23].

Gronwall-Bellman’s inequality [24] in the integral form stated the following. Let v and
f be continuous and nonnegative functions defined on |4, b], and let vy be a nonnegative
constant. Then, the inequality

t
u(t) < vg —|—/a f(s)v(s)ds, forall te [a,b], 1)

implies that
t
v(t) < vy exp</ f(s)ds), forall t € [a,b].
a

Baburao G. Pachpatte [25] proved the discrete version of (1). In particular, he proved
the following: if v(n), a(n), y(n) are nonnegative sequences defined for n € Ny and a(n) is
non-decreasing for n € Ny, and if

n—1
vlon) < alm) + X v(mo (), m € Mo @)

then
n—1

v(n) < a(n) Ijo[l +7(n)],n € No.

Bohner and Peterson [2] unify the integral form (2) and the discrete form (1) by
introducing a dynamic inequality on a time scale T as follows: if v, { are right-dense
continuous functions and y > 0 is a regressive and right-dense continuous function, then

t
v(t) <g(t)+ [ v(n)y(n)Ay, forall teT,
to
which implies
t
v(t) <80 + [ eqt,a(m)C()y(y)Dy, forall teT,

fo

The authors [26] studied the following result:

) 9()
se) < a0+ [ [0 Sienlfenitelsn)ellen)

+ [ 9200 mEe e m)@ (o) dx | dnds
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where v, f, S € C(L; x I, R}), a € C({,R;) are nondecreasing functions, I, I, € R,
0 € Cl(I;,I;),8 € CY(I, I,) are nondecreasing with 8(¢) < ¢ on Ij, 9(t) < t on I,
31, S € C(G,R4),and E, {, @ € C(R4,Ry) with {&,{,@}(v) > 0 for v > 0, and
UETME(U) = +oo0.

The following theorem was presented by Anderson [27].

p(0(6,5)) < alts) +c(t3) [ [ g/ oem)lde, (o) + b vnst, O

where v, g, ¢, d are nonnegative continuous functions defined for (¢,s) € T x T,and bis a
nonnegative continuous function for (t,s) € [to, )T X [tg,c0)r and ¢ € C1(R, R ) with
¢’ > 0forv > 0.

Theorem 1 ([10]). (Leibniz Integral Rule on Time Scales) In the following, by YA(ry,12), we
mean the delta derivative of Y (rq,12) with respect to ry. Similarly, YV (r1, 1) is understood. If Y,
Y2 and YV are continuous, and u, h : T — T are delta-differentiable functions, then the following
formulas hold Vry € T*.

71 A 71
@) [/HIZ;))Y(rl,rZ)ArQ] - /u’:fl))YA(rl,rz)Arz )Y (o(r), h(r)) — ub(r)
Y(o(r1),u(r1));
1 Vv “h(rq
i [/ ffl))wl,rz)mz -/ 'Zfl))mrl,rz)mz £ 1 ()Y (p(r), () — u¥ ()
Y(p(r1),u(r1));
7’1 A 7'1
(iii) Uulzfl))\{(rl,rz)wz} - /u’:l))y/l(rl,rz)wz 4 ()Y (o (), h(r)) — u(r1)
Y(o(r1),u(r1));
1 v 51
w [f i:l))Y(ﬁ,Tz)VTz -/ ’gfl))YVm,rz)wz T ()Y (o), b)) — ¥ ()
Y(p(r1),u(r1)).

In this article, by employing the results of Theorems 1, we establish the delayed time
scale case of the inequalities proven in [26]. Further, these results are proven here to extend
some known results in [28-30].

2. Auxiliary Result

We prove the following fundamental lemma that will be needed in our main results.

Lemma 1. Suppose Ty, Ty are two times scales and a € C(Q = Ty x Ty, R.) is nondecreasing
with respect to (p,t) € Q. Assume that S, F, f € C(Q,Ry), 1 € CY(Ty,Ty) and £ €
CY(Ty, T,) are nondecreasing functions with ¢1(p) < p on Ty, €a(t) < t on Ty. Furthermore,
suppose that &, { € C(R4, R) are nondecreasing functions with {Z,{}(F ) > 0 for F > 0, and

Fl_l}rﬂooa(F) = +oo. If F (g, t) satisfies

0(p) bl
E(F(pt) <alpt)+ o /to S, m)f(e,mE(F(g,m))AnVg 4)

for (p,t) € Q, then

41(p)

0

rion <z {6 [cwwm+ [ [ sensenaved} o
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for0 < p < 1,0 <t < tq, where
v V¢ +oo V¢
G(v) = ————,0>7y >0, G(4o0 :/ ———— =+ (6)
o ZE1(Q) = TE©)

and (g1, t) € Q) is chosen so that

b(p) rla(t)
(G(ﬂ(@, H)+J, /t %(f;,ﬂ)f(g,ﬂ)AWg) € Dom(G7).
0 0
Proof. Suppose that a(gp,t) > 0. Fixing an arbitrary (o, o) € ), we define a positive and

nondecreasing function (g, t) by

Li(p)  pla(t)
(e, t) = a(gpo, to) + /t0 (e, m)f(e,m)E(F (c,1))AnVg, ?)

90
for0 < p < o < 91,0 <t <ty <ty then P(po,t) = P(p,to) = a(gpo, to) and
E(F(p.1) <9l t),

We obtain
F(p,t) <27 (p(p, 1)) ®)

Taking the V-derivative for (7) while employing Theorem 1 (iv), we have

2(t)
WP o) = ) [ S o))y

IN

o) [ st e (= wete) )

6(t) o

(i), 1) f(a(p),m)Ay  (9)

IN

C(=2 (i (0), £0)) () [

to
Inequality (9) can be written in the form
YVo(p,t) v &)
ey </ p/ S(la(p),n)fUa(p),n)Ay. (10)
g(dfl(lp(p,t))) 1( ) o (1( )U)f( l( )77) Ui
Taking the V-integral for Inequality (10) obtains

t(p) la(t)

Gp(on) < GWleot)+ [ [T S(enflemanve
t(p) la(t)

< Glalonto)+ [ [T Stemslemsnve.

20

Since (o, to) € Q) is chosen to be arbitrary,

t(p) (b
w0 <6t |cawn+ [ [T sensenave.  an

From (8) and (11), we obtain the desired result (5). We carry out the above procedure
with € > 0 instead of a(gp, t) when a(p, t) = 0 and subsequently lete — 0. [

Remark 1. If we take T = R, po = 0 and tg = 0 in Lemma 1, then Inequality (4) becomes the
inequality obtained in [26] (Lemma 2.1).
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3. Main Results

In the following theorems, with the help of the Leibniz integral rule on time scales,
Theorem 1 (item (iv)), and employing Lemma 1, we establish some new dynamics of the
Gronwall-Bellman—Pachpatte type on time scales.

Theorem 2. Let F, a, f, {1 and {5 be as in Lemma 1. Let 1, 3 € C(Q,Ry). If F (g, t) satisfies

t(p) ()
2 o) < aton+ [ [ sieniseni @)
+ ; %z(x,n)é(F(x,ﬂ))Ax} AnVe (12)

for (p,t) € Q, then
o 1 bLp) la(t)
Fpt) <E {G (P i /t n)Aan>} (13)
90 0
for 0 < p < 1,0 <t < t1, where G is defined by (6) and
SIONTION S o
plp 1) = Gla(p, 1)) + g /t S1(em) (/p \sz(x,ﬂ)Ax) ApVg (14)
20 0 0
and (p1,t1) € Q is chosen so that
l1(p) o
(p 1 / . n)Aan) € Dom(G_l).
0 to

Proof. By the same steps in the proof of Lemma 1, we can obtain (13), with suitable
changes. [

Remark 2. If we take Sy (g, t) = O, then Theorem 2 reduces to Lemma 1.

Corollary 1. Let the functions I, f, 31, So, a, £1 and £ be as in Theorem 2. Further suppose that
q > p > 0are constants. If F (p,t) satisfies

l(p) rla(t)
Fion < aon+ = " [siepisenren
0
+ i dz(x,n)F”(x,f?)Ax]AﬂVg (15)
20

for (p,t) € Q, then

1

li(p) rla(t)
/ K/ S Qzﬂ)f(Q/U)AUVQ} ! (16)

20

F(W)S{

where

q-p (p) pla(t) I
p(p,t) = (a(p,t)) 7 + / %(m)(/p %z(X,W)AX>AWg-
20

©0 to

Proof. In Theorem 2, by letting &(F ) = F9,{(F ) = F ¥, we have

v Vg vvg q (qp ‘H’)
G(v) = Hiz/—z v i1 —ov, ), o>0v9>0
= T@ @) o T T : :

<
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pVo(p,t)

IN

IN

and

We obtain Inequality (16). [

Theorem 3. Under the hypotheses of Theorem 2, suppose E, {, @ € C(Ry, Ry ) are nondecreasing
functions with {E,,@}(F) > 0for [ > 0and I (p, t) satisfies

2 (ph) < ) /f FlomI(r (em)a(r (e )
i ; %z(x,U)C(F(X,W))AX]AWg 17)

for (p,t) € Q, then

Flpt) <EB™ {Gl<F { /W) /t:,zm %1(g,n)f(§,17)Af7Vg]>} (18)

for0 < p < 91,0 <t < ty, where G and p are as in (6) and (14), respectively, and

v V¢
w @E1(G1(¢)))

and (p1,t1) € Q is chosen so that

F(v) = ,0>109 >0, F(+00) = 400 (19)

[F(p(p,t>)+ ;:(m /:(t) %(f;,v)f(gn?)Aan} € Dom(Ffl).

Proof. Assume thata(p,t) > 0. Fixing an arbitrary (o, tp) € (), we define a positive and
nondecreasing function (g, t) by

l1(p) ot
pon = atont)+ [ [ Sl nir el cn)

to

[ %(m)@wm))m} MV, (20)
0
for0 < p < o < 91,0 <t <ty <ty then P(po,t) = P(p,to) = a(gpo, to) and

Fp,t) <E (o, t)). (21)

Taking the V-derivative for (20) and employing Theorem 1 (iv) gives

o) [ it e @)l (()n)

4 (p)
+ %mn)aF(x,n))Ax}An

4(p)
[ Sz(X/W)C(El(l/J(X/’?)))AX] Ay (22)

0

() (B @l (p), 6(1))) x
2(t)
[ st |pee),ne(z

fo

[x1
=
o~
S
=
N
+
~—



Symmetry 2022, 14, 1867

7 of 15
From (22), we have
¥Vv (o, 1) < v ba(t) -1
A/ 1 31 (4 (), 4 (p), = (),
e < e [T s n[ineme(E e )
4H(p)
+/ %z(x,n)Ax] Ary. (23)
00
Taking the V-integral for (23) gives
(1)
o) < cuem+ [ [ sem[fena(@wen)
J90 to
"G
) S emax|Anve
J 0 i
t(p) la(t)
< Glalpoto)+ [ [T siem[flama(E o))
0 to
] g
+ | Salxmbx|AnVe.
©0 |
Since (o, to) € Q is chosen arbitrarily, the last inequality can be rewritten as
l(p) la(t)
Gl(p,H) < plo,t) /t fleme(E  wle )MV @9
0

Since p(gp, t) is a nondecreasing function, an application of Lemma 1 to (24) gives us

t(p) rb(t)
v <6 (0 Fpon+ [ [ aiensenmve)). @)

From (21) and (25), we obtain the desired inequality (18).

Now, we take the case a(p,t) = 0 for some (p,t) € Q. Let ac(p,t) = a(p,t) + ¢,
for all (p,t) € Q), where € > 0 is arbitrary, and let ac(p,t) > 0 and ac(p,t) € C(Q,R;)
be nondecreasing with respect to (p,t) € . We carry out the above procedure with
ae(gp,t) > 0 instead of a(gp, t), and we obtain

Fpt) <E™ {G—l(F—1 [P(pe(@ o0 /tjz ”)Aﬂng}

where

tp) bt o
petont) = Glactor)+ [ [ suen ([ satenax)arve
0 20

Letting € — 0", we obtain (18). The proof is complete. [

Remark 3. Ifwe take T =R, po = 0 and tg = 0 in Theorem 3, then Inequality (17) becomes the
inequality obtained in [26] (Theorem 2.2(A_2)).

Corollary 2. Let the functions I, a, f, 31, S, €1 and £ be as in Theorem 2. Further suppose that
q, p and r are constants with p > 0,r > 0and q > p +r. If F (p, t) satisfies

Lo(t)
Fiet) < apn)+ | st ene e
20 0

+ %z(x,ﬂ)F F (X,W)Ax] AnVg (26)

£0
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for (p,t) € Q, then

1

—p-r — 4 6(1) —p=r
F(p,t) < {[p(m n)'er 4 2T p r/ ! /to Sl(gfn)f(g,wAWQ} (27)

where

plot) = (a(p,t) T +1=L e /:2 m)(/ \Sz(Xrﬂ)AX)AWVG

£0

Proof. An application of Theorem 3 withE(F ) = F9,{(F) = F?,and @(F ) = F " yields
the desired inequality (27). O

Theorem 4. Under the hypotheses of Theorem 3, if F (g, t) satisfies

2 (oh) < A /Z FlomI(r (em)a(F ()
+ /g %mn)@(F(x,n»w(F(m))Ax] ApVe 28)

for (p,t) € Q, then

U (p I260)
F(p,t) <& {G‘l( [Po o) g/t H)AWVQD} (29)

0

for0 < p < 1,0 <t < t) where

potort) =BGt + [ [ siten ([ saumax)arve

and (p1,t) € Q) is chosen so that

bL(p) rla(t 1
po(g,t) / (¢, mAnVe| € Dom(F )
fo
Proof. Assume that a(p,t) > 0. Fixing an arbitrary (o, to) € Q), we define a positive and

nondecreasing function ¢(p, t) by

51 KJ

wo) = aoni+ [ [ Sienlie i @metr )

0

+/m %2(7(/U)g(F(x,U))w(F(X,U))AX ApVe

for0 < o < pg < 1,0 < t < to < ty, then P(po, 1) = P(p, to) = a(po, to), and
Flpt) <E (o). (30)
By the same steps as in the proof of Theorem 3, we obtain

plpt) = Gl{G(a(mto " /tjz flema (2 (y(em)

£0

+ [ satuma(= wonm)) | Aan}.
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We define a nonnegative and nondecreasing function v (g, t) by

oo = Glatooto)+ [ [ sien|[flema(E wen)]

+ [ %z(xfn)w(ﬁ’ (tlﬂ(x,n)))Ax} AV

90
then v(po, t) = v(p, to) = G(a(gpo, to)),
P(p,t) < G o(p, 1) (31)

and then, employing Theorem 1 (iv), we have

Vo < o) [ sible)n][fEe)ne(E (¢ ene)n))

N 41 (p) S ()@ (371 (Gfl(v(){/ t))) ) AX} Ay

0
£o(1)

(o227 (M0t lo) £0))) [ Sithlolnfalo)n)

to
L1(p)
+ 32 (x, n)Ax} Y

IN

or

UVgJ<p’ t) 160 o
FeEite=ramn IO SN CUORNICIBRY
t(p)
/. ’ SZ(X/U)AX}AU-

Taking the V-integral for the above inequality gives

blp) rla(t
Fo(o,0) < Folon ) + [ [ siten[em + [ saumax]srve
0

or

1 b(p) bt
olot) < F{F(Galon o) + [ seniren
0

£0

9
+ %z(x,n)Ax} AWQ}. (32)
0

From (30)-(32), and since (o, fp) € ) is chosen arbitrarily, we obtain the desired
inequality (29). If a(p,t) = 0, we carry out the above procedure with € > 0 instead of
a(p, t) and subsequently let € — 0. The proof is complete. [

Remark 4. If we take T = R and oo = 0 and ty = 0 in Theorem 4, then Inequality (28) becomes
the inequality obtained in [26] (Theorem 2.2(A3)).

Corollary 3. Under the hypotheses of Corollary 2, if F (¢, t) satisfies

bL(p) () .
Fon < alon+ [ [T sitenlfenremi )
0

+/p S2(x, MFP(x,mF" (x, m)Ax | AV (33)
0
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Po(@/ t)

for (p,t) € Q, then

1

—r (p) () qg—p—r
F(p,t) < {m(p, 4P p /g /t %1(9,11)f(gﬂ7)A'7V9} (34)
0

where

= (a(p, ) T + 1= P_r/z1 ! /th(t) Wmﬂ(/g %z(x,W)AX)AWg

q

£0

Proof. An application of Theorem 4 with E(F ) = F1,{(F) = F?,and @(F ) = F 7 yields
the desired inequality (34). O

Theorem 5. Under the hypotheses of Theorem 3, if I (p, t) satisfies

E(F(p,t) < o KJ/ @(F (c,m)) x
70 to
[f(gln)C(F(gfn)) +/p0 32(70’7)@(} AyVg (35)

for (p,t) € Q, then

1 1 1 Glp) bt
Fpt) <E” {G1 <F1 [Fl(m(@, /t W)AWQ} )} (36)
for 0 < p < 97,0 < t < tp, where
[ Vg o) — o Vg e
60) = [ gy 2 0G0 = [ S = e @
v V¢
Fi(v) = ,0 > 109 > 0,F(+00) = +00 (38)
h i)
[1 9 [2
p1(p,t) = Gi(a(p, K /t (/: %(mn)M) AnVg (39)

and (g, t2) € Q is chosen so that

£(p)

{H(Pl(@rt)) + /tjz(t) Sl(g,q)f(g,iy)Aan] c Dom(Ff1>.

20

Proof. Suppose that a(gp,t) > 0. Fixing an arbitrary (o, to) € ), we define a positive and
nondecreasing function (g, t) by

l1(p) ot
pon = atont)+ [ [ siemalr cm)le et en)

to

9
+ %z(x,n)Ax] AnVg
0

for 0 < p < g < 2,0 <t <ty < tp, then ¢(po,t) = P(p, to) = a(po, to),

Fp,t) <E (g, h)). (40)

Employing Theorem 1 (iv),
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2(t)
P00 < (o) /t: (), mn [ @ o) )| [F(E (o), mE (27 (e ()m)

A (X, m)Ax | Ay
0 ’
2(t)
< e[ wlalp), )] /tj 16 (0),m) [ (0)mE (27 (e (0) ) )
41(p)
/., (x,m) x| An
then
Vo 2(t)
LD ) [ sl [ weenn)
+ Kf(m %z()m)Ax} Ayp.

Taking the V-integral for the above inequality gives

bLp) la(t) —1
Gt = com+ [ [ sien[feni (= wen)
+ g%z(x,U)Ax]AWg
£0
then
Lo (t)
G < G+ [ [ sen[femz(= wen)
J 0 to

(9
+ i %z(x,ﬂ)Ax} AyVs.
00

Since (o, to) € Q) is chosen to be arbitrary, the last inequality can be restated as
SIONCION i

Gi(p(p, 1) < pi(p.t) /g /t Siemfems (27 wiem))anve @)
20 0

Itis easy to observe that p1 (g, t) is a positive and nondecreasing function forall (p, t) € (),
and an application of Lemma 1 to (41) yields the inequality

P(p,t) < G ( [Fl(Pl o) o /tjz q)Aan]). (42)

From (40) and (42), we obtain the desired inequality (36).
If a(p,t) = 0, we carry out the above procedure with € > 0 instead of a(p,t) and
subsequently let € — 0. The proof is complete. [

Remark 5. If we take T = R and oo = 0 and ty = 0 in Theorem 5, then Inequality (36) becomes
the inequality obtained in [26] (Theorem 2.7).
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Theorem 6. Under the hypotheses of Theorem 3 and letting p be a nonnegative constant, if F (g, t) sat-

isfies
S (0,0) < M st x
[f(m)@(ﬂm)) s %z(x,n)AX] A7V @)

for (p,t) € Q, then

O (t
Fpt) < 51{G1 <F [Fl(m(p, /t W)A’?VGD} (44)
for 0 < o < 5,0 <t < ty, where
v V¢ +oo V¢
G = —2 > 0,Gi(+) = — = =40 45
N TR iy M == 1 “

and Fy, py are as in Theorem 5 and (3, t2) € ) is chosen so that

l(p) la(t)
{H(Pl(@, /t ﬂ)Aan] € Dom(Fl_l).
0

Proof. An application of Theorem 5 with @(F ) = F ¥ yields the desired inequality (44). [

Remark 6. Tuking T = R, the inequality established in Theorem 6 generalizes [30] (Theorem
D (with p =1, a(p,t) = b(p) +c(t), po = 0, to = 0, I1(c,7)f (e, 1) = hig, 1) and
() (S5, S200m)ax) = gle ).

Corollary 4. Under the hypotheses of Theorem 6 and q > p > 0 being constants, if I (p,t)
satisfies

0y( Oy (t
Fi(p,t) < / p/to mEP(c,n) x
{f(g,ﬂ)é(F(gfﬂ)) + /K0 %‘z(x,n)Ax] AyVg (46)

for (p,t) € Q, then

F(pt) < {Ffl {Fl(m(@ o p)/Zz W)AWVQ]}% (47)

for0 < o < g, 0 <t <t where

7 tle) bt S
mo) = oo+ [ [ s ( [ aa00mar)arve
and Fy is defined in Theorem 6.

Proof. An application of Theorem 6 with E(F (p,t)) = F* to (46) yields Inequality (47); to
save space, we omit the details. [

Remark 7. Taking T = R, oo = 0, tg = 0, a(p, t) = b(p) +c(t), 31(5, 1) f (5, 1) = h(c,n),

and E‘sl(g,n)( pgo %z(x,q)Ax) = g(¢,n) in Corollary 4, we obtain [31] (Theorem 1).
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Remark 8. Tuking T =R, pg =0,t9 =0, a(p,t) = cﬁ, S1(g,n)f (g, ) = h(n), and

S1(g, 1) ( pgo S (x, 17)A)(> = ¢(#) and keeping t fixed in Corollary 4, we obtain [32] (Theorem 2.1).

4. Application

In the following, we discus the boundedness of the solutions of the initial boundary
value problem for the partial delay dynamic equation of the form

% (o) = 4ot 9t0 - (o)1= a0, [ Bl =@l nac) @9

0

¥(p,to) = a1(p), ¥(po,t) = a2(t), a1(po) = a1, (0) = 0

for (p,t) € Q, where ¥,b € C(Q,Ry),A € C(Qx R%R),B € C({xR,R) and h; €
CY(Ty,R4),hy € CY(T,,Ry) are nondecreasing functions such that i (p) < p on Ty,
hy(t) < tonTy and hy (p) < 1, hy (t) < 1.

Theorem 7. Assume that the functions a1, ay, A, B in (48) satisfy the conditions

|a1(p) +a2(t)] < a(p,t) (49)

APl < S Sien Femlpl +1F]] (50)

BOGT9)| < S2(xm) Iyl (51)

where a(p,t),31(¢,1), f(c,n), and S2(x, i) are as in Theorem 2, and q > p > 0 are constants.

If (g, t) satisfies (48), then

U(p) rla(t) — - %
vt < {ponmmn [ [sienienmvd” e
where
plot) = (alp)T
li(p) la(t) — ¢ —
+M1M2/po /to \91(9177)(M1/mJZ(XrW)AX)AWvQ
and
M=oy M T Ty
and §1(%C) = 31(7+h1(€)/§+h2(’7))/§2(%§) = S ¢ +ha(n)), J;(%C)
= f(y+hi(g), &+ ha(n)).

Proof. If (p, t) is any solution of (48), then

P, t) = a1(p) + ax(t)
/ (G/’? P —hi(g),m— hz(ﬂ))r/: Bt 1,9 (x — hl(x),n))Ax) ApVe.  (53)

Usmg the conditions (49)—(51) in (53), we obtain
< (p/ q — p / \sl g/

- /p 0 %(mn)@(m)%x} ArVe. "

(¢, m)|(c —hi(g), 1 —ha(n))|P
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Now, making a change of variables on the right side of (54), ¢ —h1(g) = 7,1 —ha(7) =
¢ o —hi(p) =Ll1(p) for p € Ty, t — hy(t) = ¢»(t) for t € T, we obtain the inequality

q [1 ga

1= vy, /t 'S, [f(v,«:nlp(mw

£0

lp(p, )T < alpt)+
o
My [ %z<u,§>|¢<u,n>|”A4A§m. (55)

We can rewrite Inequality (55) as follows:

q 6(p) § - P
o0l < aton+ = [ [ sien|fenivien)
+My /p S200m 9 Go )| AX]A’?VQ- (56)

As an application of Corollary 1 to (56) with F (p,t) = |¢(p, t)|, we obtain the desired
inequality (52). O
5. Conclusions

Using the Leibniz integral rule on time scales, we examined additional generalizations
of the integral retarded inequality presented in [26,27] and generalized a few of these
inequalities to a generic time scale. We also looked at the qualitative characteristics of
various different dynamic equations’ time scale solutions. As future work, we intend to
generalize these results by using conformable calculus on time scales.
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