Next Article in Journal
Variations of Carbon Monoxide Concentrations in the Megacity of São Paulo from 2000 to 2015 in Different Time Scales
Previous Article in Journal
Application of Convective Condensation Level Limiter in Convective Boundary Layer Height Retrieval Based on Lidar Data
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle
Atmosphere 2017, 8(5), 80; doi:10.3390/atmos8050080

The Precipitation Variations in the Qinghai-Xizang (Tibetan) Plateau during 1961–2015

1
State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Academic Editor: Ricardo Machado Trigo
Received: 29 January 2017 / Revised: 13 April 2017 / Accepted: 20 April 2017 / Published: 25 April 2017
(This article belongs to the Section Climatology and Meteorology)
View Full-Text   |   Download PDF [5131 KB, uploaded 25 April 2017]   |  

Abstract

The variation of precipitation plays an important role in the eco-hydrological processes and water resources regimes on the Tibetan Plateau (TP). Based on the monthly mean precipitation data of 65 meteorological stations over the TP and surrounding areas from 1961 to 2015, variations, trends and temporal–spatial distribution of precipitation have been studied; furthermore, the possible reasons were also discussed preliminarily. The results show that the annual mean precipitation on the TP was 465.5 mm during 1961–2015. The precipitation in summer (June–August (JJA)) accounted for 60.1% of the whole year’s precipitation, the precipitation in summer half-year (May–October) accounted for 91.0%, while the precipitation in winter half-year (November–April) only accounted for 9.0% of the whole year’s precipitation. During 1961–2015, the annual precipitation trend was 3.8 mm/10a and the seasonal precipitation trends were 3.0 mm/10a, 0.0 mm/10a, −0.1 mm/10a and 0.4 mm/10a in spring, summer, autumn and winter on the TP, respectively. The precipitation has decreased from the southeastern to northwestern TP; the trend of precipitation has decreased with the increase of altitude, but the correlation was not significant. The rising of air temperature and land cover changes may cause the precipitation by changing the hydrological cycle and energy budget. Furthermore, different patterns of atmospheric circulation can also influence precipitation variation in different regions. View Full-Text
Keywords: precipitation; Tibetan Plateau; trends; temporal–spatial distribution; hydrological cycle precipitation; Tibetan Plateau; trends; temporal–spatial distribution; hydrological cycle
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wan, G.; Yang, M.; Liu, Z.; Wang, X.; Liang, X. The Precipitation Variations in the Qinghai-Xizang (Tibetan) Plateau during 1961–2015. Atmosphere 2017, 8, 80.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top