Next Article in Journal
Seasonal Variation of Nitrate Concentration and Its Direct Radiative Forcing over East Asia
Previous Article in Journal
Investigation of the Optical Properties of Aerosols over the Coastal Region at Dalian, Northeast China
Article Menu

Export Article

Open AccessArticle
Atmosphere 2016, 7(8), 104; doi:10.3390/atmos7080104

Retention of Atmospheric Particles by Local Plant Leaves in the Mount Wutai Scenic Area, China

Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Jinzhong 030801, China
These authors contributed equally to this work.
*
Author to whom correspondence should be addressed.
Academic Editor: Robert W. Talbot
Received: 29 June 2016 / Revised: 24 July 2016 / Accepted: 3 August 2016 / Published: 8 August 2016
View Full-Text   |   Download PDF [1815 KB, uploaded 8 August 2016]   |  

Abstract

To evaluate the characteristics of atmospheric particle retention by plant leaves during the tourism season in Buddhism-based scenic areas, plants distributed in the core area of the Mount Wutai scenic area were selected for study: Populus davidiana (Po. davidiana), Rosa hugonis Hemsl. (R. hugonis), Betula platyphylla Suk. (B. platyphylla), Rosa xanthina Lindl. (R. xanthina), Periploca sepium Bunge (Pe. sepium), Spiraea salicifolia L. (S. salicifolia), Vitex negundo var. Heterophylla (V. negundo var. heterophylla) and Pinus tabuliformis Carrière (Pi. tabuliformis). Before rain, the atmospheric suspended particle-retaining weight of the plant leaves varied in the range of 6.95 ± 1.55 (Pi. tabuliformis) to 38.60 ± 18.32 mg/cm2 (Po. davidiana); the light shaded areas caused by particles on leaves were in the range of 7.25 ± 0.04 (Pi. tabuliformis) to 126.50 ± 6.66 cm2/leaf (Po. davidiana); and the atmospheric particle-retaining horizontal density of leaves varied in the range of 110 ± 2 (Pi. tabuliformis) to 255 ± 11 per cm2 (Po. davidiana). After rain, the atmospheric suspended particle-retaining quality of plant leaves varied in the range of 0.65 ± 0.23 (Pi. tabuliformis) to 3.50 ± 1.83 mg/cm2 (Po. davidiana); the light shaded areas by particles on leaves were in the range of 4.26 ± 0.02 (Pi. tabuliformis) to 45.96 ± 2.42 cm2/leaf (Po. davidiana); and the atmospheric particle-retaining horizontal density of leaves was in the range of 97 ± 2 (Pi. tabuliformis) to 147 ± 7 per cm2 (Po. davidiana). The broad-leaved plants, particularly Po. davidiana, R. hugonis and B. platyphylla, were appropriate species for purification of atmospheric particles. Plants with lower dust-retention abilities than the above three species (e.g., R. xanthina, Pe. sepium, S. salicifolia and V. negundo var. heterophylla) could be alternative plants for purification. However, the needle-leaved plant Pi. tabuliformis was not recommended as a tree species for purification of atmospheric particles in the core area of the Mount Wutai scenic area. View Full-Text
Keywords: particulate matter; leaves; Dust Retention; light shading area; retention density particulate matter; leaves; Dust Retention; light shading area; retention density
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Shi, S.; Wu, Z.; Liu, F.; Fan, W. Retention of Atmospheric Particles by Local Plant Leaves in the Mount Wutai Scenic Area, China. Atmosphere 2016, 7, 104.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top