Next Article in Journal
Assessing the Correlation between Land Cover Conversion and Temporal Climate Change—A Pilot Study in Coastal Mediterranean City, Fethiye, Turkey
Next Article in Special Issue
The Impact of Selected Parameters on Visibility: First Results from a Long-Term Campaign in Warsaw, Poland
Previous Article in Journal
The Role of Aerosol-Cloud-Radiation Interactions in Regional Air Quality—A NU-WRF Study over the United States
Previous Article in Special Issue
Chemical Composition of Water Soluble Inorganic Species in Precipitation at Shihwa Basin, Korea
Article Menu

Export Article

Open AccessArticle
Atmosphere 2015, 6(8), 1069-1101; doi:10.3390/atmos6081069

Airborne Aerosol in Situ Measurements during TCAP: A Closure Study of Total Scattering

1
Pacific Northwest National Laboratory, Richland, WA 99352, USA
2
Department of Physics, University of Nevada, Reno, NV 89557, USA
3
Brookhaven National Laboratory, Upton, NY 11973, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Armin Sorooshian
Received: 1 June 2015 / Revised: 21 July 2015 / Accepted: 24 July 2015 / Published: 31 July 2015
(This article belongs to the Special Issue Atmospheric Composition Observations)
View Full-Text   |   Download PDF [2362 KB, uploaded 31 July 2015]   |  

Abstract

We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by a suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively. View Full-Text
Keywords: aircraft measurements of aerosol microphysical, chemical, and optical components and ambient relative humidity; Ultra-High Sensitivity Aerosol Spectrometer (UHSAS); Passive Cavity Aerosol Spectrometer (PCASP); Cloud and Aerosol Spectrometer (CAS); Aerosol Mass Spectrometer (AMS); Single Particle Soot Photometer (SP2); integrating nephelometer; humidification system; Two-Column Aerosol Project (TCAP) aircraft measurements of aerosol microphysical, chemical, and optical components and ambient relative humidity; Ultra-High Sensitivity Aerosol Spectrometer (UHSAS); Passive Cavity Aerosol Spectrometer (PCASP); Cloud and Aerosol Spectrometer (CAS); Aerosol Mass Spectrometer (AMS); Single Particle Soot Photometer (SP2); integrating nephelometer; humidification system; Two-Column Aerosol Project (TCAP)
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kassianov, E.; Berg, L.K.; Pekour, M.; Barnard, J.; Chand, D.; Flynn, C.; Ovchinnikov, M.; Sedlacek, A.; Schmid, B.; Shilling, J.; Tomlinson, J.; Fast, J. Airborne Aerosol in Situ Measurements during TCAP: A Closure Study of Total Scattering. Atmosphere 2015, 6, 1069-1101.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top