Next Article in Journal
Temporal Variability of Atmospheric Total Gaseous Mercury in Windsor, ON, Canada
Next Article in Special Issue
A Modelling Study of the Impact of On-Road Diesel Emissions on Arctic Black Carbon and Solar Radiation Transfer
Previous Article in Journal
A Comparative Study of B-, Γ- and Log-Normal Distributions in a Three-Moment Parameterization for Drop Sedimentation
Article Menu

Export Article

Open AccessArticle
Atmosphere 2014, 5(3), 518-535; doi:10.3390/atmos5030518

Atmospheric Ozone and Methane in a Changing Climate

1
Department of Geosciences, University of Oslo, N-0315 Oslo, Norway
2
Center for International Climate and Environmental Research—Oslo (CICERO), N-0318 Oslo, Norway
3
Department of Geology and Geoenvironment, University of Athens, 15784 Athens, Greece
4
NORWEGIAN Institute for Air Research (NILU), N-2027 Kjeller, Norway
5
Academy of Athens, 10680 Athens, Greece
6
University of California, Irvine, CA 92697, USA
*
Author to whom correspondence should be addressed.
Received: 13 September 2013 / Revised: 19 March 2014 / Accepted: 17 June 2014 / Published: 29 July 2014
(This article belongs to the Special Issue Climate-Chemistry Interactions)
View Full-Text   |   Download PDF [836 KB, uploaded 29 July 2014]   |  

Abstract

Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O), NOx compounds (NO, NO2), CO, hydrogen radicals (OH, HO2), volatile organic compounds (VOC) and chlorine (Cl, ClO) and bromine (Br, BrO). Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills).Methane is broken down by the hydroxyl radical (OH). OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO). Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material. During thawing of permafrost, parts of the organic material that is deposited could be converted to methane. Furthermore, methane stored in deposits under shallow waters in the Arctic have the potential to be released in a future warmer climate with enhanced climate impact on methane, ozone and stratospheric water vapor. Studies performed by several groups show that the transport sectors have the potential for significant impacts on climate-chemistry interactions. There are large uncertainties connected to ozone and methane changes from the transport sector, and to methane release and climate impact during permafrost thawing. View Full-Text
Keywords: ozone; methane; atmospheric processes; chemistry; dynamics; Quasi Biennial Oscillation (QBO); permafrost ozone; methane; atmospheric processes; chemistry; dynamics; Quasi Biennial Oscillation (QBO); permafrost
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Isaksen, I.S.A.; Berntsen, T.K.; Dalsøren, S.B.; Eleftheratos, K.; Orsolini, Y.; Rognerud, B.; Stordal, F.; Søvde, O.A.; Zerefos, C.; Holmes, C.D. Atmospheric Ozone and Methane in a Changing Climate. Atmosphere 2014, 5, 518-535.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top