Next Article in Journal
Description of Genetic Variants in BRCA Genes in Mexican Patients with Ovarian Cancer: A First Step towards Implementing Personalized Medicine
Next Article in Special Issue
Targeted Approaches for In Situ Gut Microbiome Manipulation
Previous Article in Journal
Possible Role of Envelope Components in the Extreme Copper Resistance of the Biomining Acidithiobacillus ferrooxidans
Previous Article in Special Issue
Emerging Opportunities for Synthetic Biology in Agriculture
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessFeature PaperPerspective
Genes 2018, 9(7), 348; https://doi.org/10.3390/genes9070348

The Multiplanetary Future of Plant Synthetic Biology

1
Department of Molecular Sciences, Macquarie University, Sydney NSW 2109, Australia
2
CSIRO Synthetic Biology Future Science Platform, Canberra ACT 2601, Australia
3
New South Wales Department of Primary Industries, Orange NSW 2800, Australia
*
Author to whom correspondence should be addressed.
Received: 30 May 2018 / Revised: 6 July 2018 / Accepted: 9 July 2018 / Published: 10 July 2018
(This article belongs to the Special Issue Emerging Applications in Synthetic Biology)
Full-Text   |   PDF [1410 KB, uploaded 11 July 2018]   |  

Abstract

The interest in human space journeys to distant planets and moons has been re-ignited in recent times and there are ongoing plans for sending the first manned missions to Mars in the near future. In addition to generating oxygen, fixing carbon, and recycling waste and water, plants could play a critical role in producing food and biomass feedstock for the microbial manufacture of materials, chemicals, and medicines in long-term interplanetary outposts. However, because life on Earth evolved under the conditions of the terrestrial biosphere, plants will not perform optimally in different planetary habitats. The construction or transportation of plant growth facilities and the availability of resources, such as sunlight and liquid water, may also be limiting factors, and would thus impose additional challenges to efficient farming in an extraterrestrial destination. Using the framework of the forthcoming human missions to Mars, here we discuss a series of bioengineering endeavors that will enable us to take full advantage of plants in the context of a Martian greenhouse. We also propose a roadmap for research on adapting life to Mars and outline our opinion that synthetic biology efforts towards this goal will contribute to solving some of the main agricultural and industrial challenges here on Earth. View Full-Text
Keywords: Synthetic biology; multiplanetary life; habitability of extraterrestrial environments; plants; Mars Synthetic biology; multiplanetary life; habitability of extraterrestrial environments; plants; Mars
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Llorente, B.; Williams, T.C.; Goold, H.D. The Multiplanetary Future of Plant Synthetic Biology. Genes 2018, 9, 348.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Genes EISSN 2073-4425 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top