Next Article in Journal
Plant-Bacteria Association and Symbiosis: Are There Common Genomic Traits in Alphaproteobacteria?
Next Article in Special Issue
The Chlamydiales Pangenome Revisited: Structural Stability and Functional Coherence
Previous Article in Journal
Insights into Cross-Kingdom Plant Pathogenic Bacteria
Previous Article in Special Issue
Evolution and Quantitative Comparison of Genome-Wide Protein Domain Distributions
Article Menu

Export Article

Open AccessReview
Genes 2011, 2(4), 998-1016; doi:10.3390/genes2040998

Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk

AMAbiotics SAS, CEA/Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
Natural Sciences Division, University of Hawaii, Hilo, HI 96720-4091, USA
Fondation Fourmentin-Guilbert, 2 avenue du Pavé Neuf, 93160 Noisy-le-Grand, France
Author to whom correspondence should be addressed.
Received: 28 September 2011 / Revised: 25 October 2011 / Accepted: 16 November 2011 / Published: 29 November 2011
(This article belongs to the Special Issue Evolution and Structure of Proteins and Proteomes)
View Full-Text   |   Download PDF [847 KB, uploaded 29 November 2011]   |  


The notion of antifragility, an attribute of systems that makes them thrive under variable conditions, has recently been proposed by Nassim Taleb in a business context. This idea requires the ability of such systems to ‘tinker’, i.e., to creatively respond to changes in their environment. A fairly obvious example of this is natural selection-driven evolution. In this ubiquitous process, an original entity, challenged by an ever-changing environment, creates variants that evolve into novel entities. Analyzing functions that are essential during stationary-state life yield examples of entities that may be antifragile. One such example is proteins with flexible regions that can undergo functional alteration of their side residues or backbone and thus implement the tinkering that leads to antifragility. This in-built property of the cell chassis must be taken into account when considering construction of cell factories driven by engineering principles.
Keywords: fragility; ageing; information; disorder; isoaspartate fragility; ageing; information; disorder; isoaspartate
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Danchin, A.; Binder, P.M.; Noria, S. Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk. Genes 2011, 2, 998-1016.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Genes EISSN 2073-4425 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top