Next Article in Journal
Next Article in Special Issue
Previous Article in Journal
Previous Article in Special Issue
Genes 2011, 2(4), 998-1016; doi:10.3390/genes2040998
Review

Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk

1,* , 2
 and 3
Received: 28 September 2011; in revised form: 25 October 2011 / Accepted: 16 November 2011 / Published: 29 November 2011
(This article belongs to the Special Issue Evolution and Structure of Proteins and Proteomes)
View Full-Text   |   Download PDF [847 KB, uploaded 29 November 2011]
Abstract: The notion of antifragility, an attribute of systems that makes them thrive under variable conditions, has recently been proposed by Nassim Taleb in a business context. This idea requires the ability of such systems to ‘tinker’, i.e., to creatively respond to changes in their environment. A fairly obvious example of this is natural selection-driven evolution. In this ubiquitous process, an original entity, challenged by an ever-changing environment, creates variants that evolve into novel entities. Analyzing functions that are essential during stationary-state life yield examples of entities that may be antifragile. One such example is proteins with flexible regions that can undergo functional alteration of their side residues or backbone and thus implement the tinkering that leads to antifragility. This in-built property of the cell chassis must be taken into account when considering construction of cell factories driven by engineering principles.
Keywords: fragility; ageing; information; disorder; isoaspartate fragility; ageing; information; disorder; isoaspartate
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Danchin, A.; Binder, P.M.; Noria, S. Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk. Genes 2011, 2, 998-1016.

AMA Style

Danchin A, Binder PM, Noria S. Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk. Genes. 2011; 2(4):998-1016.

Chicago/Turabian Style

Danchin, Antoine; Binder, Philippe M.; Noria, Stanislas. 2011. "Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk." Genes 2, no. 4: 998-1016.


Genes EISSN 2073-4425 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert