Genetic Variants of HNF4A, WFS1, DUSP9, FTO, and ZFAND6 Genes Are Associated with Prediabetes Susceptibility and Inflammatory Markers in the Saudi Arabian Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Biochemical Analysis
2.3. Prediabetes Screening
2.4. Genotyping
2.5. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Association of T2DM-Related Genetic Variants with the Occurrence of Prediabetes
3.3. Association of Five Selected Genetic Variants with Anthropometric Measures
3.4. Association of Five Selected Genetic Variants with Inflammatory Markers
4. Discussion
5. Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Daghri, N.M.; Abdi, S.; Sabico, S.; Alnaami, A.M.; Wani, K.A.; Ansari, M.G.A.; Khattak, M.N.K.; Khan, N.; Tripathi, G.; Chrousos, G.P.; et al. Gut-Derived Endotoxin and Telomere Length Attrition in Adults with and without Type 2 Diabetes. Biomolecules 2021, 11, 1693. [Google Scholar] [CrossRef] [PubMed]
- Al-Disi, D.; Ansari, M.G.A.; Sabico, S.; Wani, K.; Hussain, S.D.; Elshafie, M.M.; McTernan, P.; Al-Daghri, N.M. High glucose load and endotoxemia among overweight and obese Arab women with and without diabetes: An observational study. Medicine 2020, 99, e23211. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Al-Attas, O.S.; Alkharfy, K.M.; Khan, N.; Mohammed, A.K.; Vinodson, B.; Ansari, M.G.; Alenad, A.; Alokail, M.S. Association of VDR-gene variants with factors related to the metabolic syndrome, type 2 diabetes and vitamin D deficiency. Gene 2014, 542, 129–133. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Robert, A.A.; Al Dawish, M.A.; Braham, R.; Musallam, M.A.; Al Hayek, A.A.; Al Kahtany, N.H. Type 2 Diabetes Mellitus in Saudi Arabia: Major Challenges and Possible Solutions. Curr. Diabetes Rev. 2017, 13, 59–64. [Google Scholar] [CrossRef]
- Veronese, N.; Cooper, C.; Reginster, J.Y.; Hochberg, M.; Branco, J.; Bruyère, O.; Chapurlat, R.; Al-Daghri, N.; Dennison, E.; Herrero-Beaumont, G.; et al. Type 2 diabetes mellitus and osteoarthritis. Semin. Arthritis. Rheum. 2019, 49, 9–19. [Google Scholar] [CrossRef]
- Ansari, P.; Hannan, J.M.A.; Azam, S.; Jakaria, M. Challenges in Diabetic Micro-Complication Management: Focus on Diabetic Neuropathy. Int. J. Transl. Med. 2021, 1, 175–186. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef]
- Schlesinger, S.; Neuenschwander, M.; Barbaresko, J.; Lang, A.; Maalmi, H.; Rathmann, W.; Roden, M.; Herder, C. Prediabetes and risk of mortality, diabetes-related complications and co-morbidities: Umbrella review of meta-analyses of prospective studies. Diabetologia 2022, 65, 275–285. [Google Scholar] [CrossRef]
- Mutie, P.M.; Pomares-Millan, H.; Atabaki-Pasdar, N.; Jordan, N.; Adams, R.; Daly, N.L.; Tajes, J.F.; Giordano, G.N.; Franks, P.W. An investigation of causal relationships between Prediabetes and vascular complications. Nat. Commun. 2020, 11, 4592. [Google Scholar] [CrossRef] [PubMed]
- Ismail, L.; Materwala, H.; Al Kaabi, J. Association of risk factors with type 2 diabetes: A systematic review. Comput. Struct. Biotechnol. J. 2021, 19, 1759–1785. [Google Scholar] [CrossRef]
- Al-Hazzaa, H.M. Physical inactivity in Saudi Arabia revisited: A systematic review of inactivity prevalence and perceived barriers to active living. Int. J. Health Sci. 2018, 12, 50–64. [Google Scholar]
- Alzahrani, S.H.; Alzahrani, N.M.; Al Jabir, F.M.; Alsharef, M.K.; Zaheer, S.; Hussein, S.H.; Alguwaihes, A.M.; Jammah, A.A. Consanguinity and Diabetes in Saudi Population: A Case-Control Study. Cureus 2021, 13, e20836. [Google Scholar] [CrossRef] [PubMed]
- Aljulifi, M.Z. Prevalence and reasons of increased type 2 diabetes in Gulf Cooperation Council Countries. Saudi Med. J. 2021, 42, 481–490. [Google Scholar] [CrossRef]
- Braga, T.; Kraemer-Aguiar, L.G.; Docherty, N.G.; Le Roux, C.W. Treating Prediabetes: Why and how should we do it? Minerva Med. 2019, 110, 52–61. [Google Scholar] [CrossRef]
- Amer, O.E.; Sabico, S.; Alfawaz, H.A.; Aljohani, N.; Hussain, S.D.; Alnaami, A.M.; Wani, K.; Al-Daghri, N.M. Reversal of Prediabetes in Saudi Adults: Results from an 18 Month Lifestyle Intervention. Nutrients 2020, 12, 804. [Google Scholar] [CrossRef]
- Ansari, M.G.A.; Sabico, S.; Clerici, M.; Khattak, M.N.K.; Wani, K.; Al-Musharaf, S.; Amer, O.E.; Alokail, M.S.; Al-Daghri, N.M. Vitamin D Supplementation Is Associated with Increased Glutathione Peroxidase-1 Levels in Arab Adults with Prediabetes. Antioxidants 2020, 9, 118. [Google Scholar] [CrossRef]
- Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.; Wheeler, E.; Glazer, N.; Bouatia-Naji, N.; Gloyn, A.; et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 2010, 42, 105–116. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, R.; Wang, C.; Wang, J.; Ma, X.; Hou, X.; Lu, J.; Yu, W.; Jiang, F.; Bao, Y.; et al. Variants from GIPR, TCF7L2, DGKB, MADD, CRY2, GLIS3, PROX1, SLC30A8 and IGF1 are associated with glucose metabolism in the Chinese. PLoS ONE 2010, 5, e15542. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Alkharfy, K.M.; Alokail, M.S.; Alenad, A.M.; Al-Attas, O.S.; Mohammed, A.K.; Sabico, S.; Albagha, O.M. Assessing the contribution of 38 genetic loci to the risk of type 2 diabetes in the Saudi Arabian Population. Clin. Endocrinol. 2014, 80, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Alkharfy, K.M.; Al-Attas, O.S.; Krishnaswamy, S.; Mohammed, A.K.; Albagha, O.M.; Alenad, A.M.; Chrousos, G.P.; Alokail, M.S. Association between type 2 diabetes mellitus-related SNP variants and obesity traits in a Saudi population. Mol. Biol. Rep. 2014, 41, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Abdi, S.; Binbaz, R.A.; Mohammed, A.K.; Ansari, M.G.A.; Wani, K.; Amer, O.E.; Alnaami, A.M.; Aljohani, N.; Al-Daghri, N.M. Association of RANKL and OPG Gene Polymorphism in Arab Women with and without Osteoporosis. Genes 2021, 12, 200. [Google Scholar] [CrossRef]
- Al-Othman, A.; Al-Musharaf, S.; Al-Daghri, N.M.; Yakout, S.; Alkharfy, K.M.; Al-Saleh, Y.; Al-Attas, O.S.; Alokail, M.S.; Moharram, O.; Sabico, S.; et al. Tea and coffee consumption in relation to vitamin D and calcium levels in Saudi adolescents. Nutr. J. 2012, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J.; Mohlke, K.L.; Bonnycastle, L.L.; Willer, C.J.; Li, Y.; Duren, W.L.; Erdos, M.R.; Stringham, H.M.; Chines, P.S.; Jackson, A.U.; et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316, 1341–1345. [Google Scholar] [CrossRef]
- Rung, J.; Cauchi, S.; Albrechtsen, A.; Shen, L.; Rocheleau, G.; Cavalcanti-Proença, C.; Bacot, F.; Balkau, B.; Belisle, A.; Borch-Johnsen, K.; et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat. Genet. 2009, 41, 1110–1115. [Google Scholar] [CrossRef]
- Bartoov-Shifman, R.; Hertz, R.; Wang, H.; Wollheim, C.B.; Bar-Tana, J.; Walker, M.D. Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4 α. J. Biol. Chem. 2002, 277, 25914–25919. [Google Scholar] [CrossRef]
- Silander, K.; Mohlke, K.L.; Scott, L.J.; Peck, E.C.; Hollstein, P.; Skol, A.D.; Jackson, A.U.; Deloukas, P.; Hunt, S.; Stavrides, G.; et al. Genetic variation near the hepatocyte nuclear factor-4 α gene predicts susceptibility to type 2 diabetes. Diabetes 2004, 53, 1141–1149. [Google Scholar] [CrossRef]
- Wang, C.; Chen, S.; Zhang, T.; Chen, Z.; Liu, S.; Peng, X.; Ma, J.; Zhong, X.; Yan, Y.; Tang, L.; et al. Prediabetes Is Associated with HNF-4α P2 Promoter Polymorphism rs1884613: A Case-Control Study in Han Chinese Population and an Updated Meta-Analysis. Dis. Markers 2014, 2014, 231736. [Google Scholar] [CrossRef]
- Kooner, J.S.; Saleheen, D.; Sim, X.; Sehmi, J.; Zhang, W.; Frossard, P.; Been, L.F.; Chia, K.S.; Dimas, A.S.; Hassanali, N.; et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 2011, 43, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Kanthimathi, S.; Chidambaram, M.; Bodhini, D.; Liju, S.; Bhavatharini, A.; Uma, R.; Anjana, R.M.; Mohan, V.; Radha, V. Association of recently identified type 2 diabetes gene variants with Gestational Diabetes in Asian Indian population. Mol. Genet. Genom. 2017, 292, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Shabana; Ullah Shahid, S.; Wah Li, K.; Acharya, J.; Cooper, J.A.; Hasnain, S.; Humphries, S.E. Effect of six type II diabetes susceptibility loci and an FTO variant on obesity in Pakistani subjects. Eur. J. Hum. Genet. 2016, 24, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Ashour, E.; Gouda, W.; Mageed, L.; Afify, M.; Hamimy, W.; Shaker, Y.M. Evaluation of genetic susceptibility of six type II diabetes Genome-Wide association tudies loci for obesity. Meta Gene 2020, 26, 100758. [Google Scholar] [CrossRef]
- Mohlke, K.L.; Boehnke, M. The role of HNF4A variants in the risk of type 2 diabetes. Curr. Diab. Rep. 2005, 5, 149–156. [Google Scholar] [CrossRef]
- Cho, Y.S.; Chen, C.H.; Hu, C.; Long, J.; Ong, R.T.; Sim, X.; Takeuchi, F.; Wu, Y.; Go, M.J.; Yamauchi, T.; et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 2011, 44, 67–72. [Google Scholar] [CrossRef]
- Lehman, D.M.; Richardson, D.K.; Jenkinson, C.P.; Hunt, K.J.; Dyer, T.D.; Leach, R.J.; Arya, R.; Abboud, H.E.; Blangero, J.; Duggirala, R.; et al. P2 promoter variants of the hepatocyte nuclear factor 4alpha gene are associated with type 2 diabetes in Mexican Americans. Diabetes 2007, 56, 513–517. [Google Scholar] [CrossRef]
- Yamagata, K.; Oda, N.; Kaisaki, P.J.; Menzel, S.; Furuta, H.; Vaxillaire, M.; Southam, L.; Cox, R.D.; Lathrop, G.M.; Boriraj, V.V.; et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature 1996, 384, 455–458. [Google Scholar] [CrossRef]
- Inoue, H.; Tanizawa, Y.; Wasson, J.; Behn, P.; Kalidas, K.; Bernal-Mizrachi, E.; Mueckler, M.; Marshall, H.; Donis-Keller, H.; Crock, P.; et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat. Genet. 1998, 20, 143–148. [Google Scholar] [CrossRef]
- Alfaifi, M. Interaction between rs6446482 polymorphisms in the WFS1 gene in type 2 diabetes patients. J. King Saud Univ. Sci. 2022, 34, 101721. [Google Scholar] [CrossRef]
- Mair, H.; Fowler, N.; Papatzanaki, M.E.; Sudhakar, P.; Maldonado, R.S. Novel missense WFS1 variant causing autosomal dominant atypical Wolfram syndrome. Ophthalmic Genet. 2022, 43, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhang, J.; Zhu, F.; Deng, X.; Yuan, L. Identification of the rare variant p.Val803Met of WFS1 gene as a cause of Wolfram-like syndrome in a Chinese family. Acta Diabetol. 2020, 57, 1399–1404. [Google Scholar] [CrossRef]
- Sandhu, M.S.; Weedon, M.N.; Fawcett, K.A.; Wasson, J.; Debenham, S.L.; Daly, A.; Lango, H.; Frayling, T.M.; Neumann, R.J.; Sherva, R.; et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat. Genet. 2007, 39, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, H.; Takeda, S.; Tamura, A.; Takahashi, R.; Yamaguchi, S.; Takei, D.; Yamada, T.; Inoue, H.; Soga, H.; Katagiri, H.; et al. Disruption of the WFS1 gene in mice causes progressive β-cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum. Mol. Genet. 2004, 13, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Sparsø, T.; Andersen, G.; Albrechtsen, A.; Jørgensen, T.; Borch-Johnsen, K.; Sandbæk, A.; Lauritzen, T.; Wasson, J.; Permutt, M.A.; Glaser, B.; et al. Impact of polymorphisms in WFS1 on prediabetic phenotypes in a population-based sample of middle-aged people with normal and abnormal glucose regulation. Diabetologia 2008, 51, 1646–1652. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, F.; Shah, T.; Madkhali, N.A.B.; Gaber, A.; Alsanie, W.F.; Ali, S.; Ansari, S.; Rafiq, M.; Sayyed, R.Z.; Rind, N.A.; et al. Frequency distribution and association of Fat-mass and obesity (FTO) gene SNP rs-9939609 variant with Diabetes Mellitus Type-II population of Hyderabad, Sindh, Pakistan. Saudi J. Biol. Sci. 2021, 28, 4183–4190. [Google Scholar] [CrossRef]
- Grzeszczak, W.; Molsa, M.; Tłuczykont, M.; Markowicz, A.; Swoboda, R.; Biedak, M.; Kałuża, A.; Sirek, S.; Strojek, K. The age of developing diabetes and FTO polymorphisms (rs9939609, rs1421085, and rs9930506). Endokrynol. Pol. 2017, 68, 402–406. [Google Scholar] [CrossRef]
- Chauhan, G.; Tabassum, R.; Mahajan, A.; Dwivedi, O.P.; Mahendran, Y.; Kaur, I.; Nigam, S.; Dubey, H.; Varma, B.; Madhu, S.V.; et al. Common variants of FTO and the risk of obesity and type 2 diabetes in Indians. J. Hum. Genet. 2011, 56, 720–726. [Google Scholar] [CrossRef]
- Wang, S.; Ma, W.; Yuan, Z.; Wang, S.M.; Yi, X.; Jia, H.; Xue, F. Association between obesity indices and type 2 diabetes mellitus among middle-aged and elderly people in Jinan, China: A cross-sectional study. BMJ Open 2016, 6, e012742. [Google Scholar] [CrossRef]
Parameters | Control | Prediabetes | p-Values |
---|---|---|---|
N | 797 (70.6) | 332 (29.4) | |
Age (years) | 41.5 ± 12.6 | 45.7 ± 13.9 | <0.01 |
Male/Female | 301/496 | 149/183 | 0.03 |
Weight (kg) | 72.0 (62.0–83.0) | 77.0 (67.0–88.0) | <0.01 |
BMI (kg/m2) | 27.5 (24.3–31.6) | 29.0 (25.4–33.8) | <0.01 |
WHR | 0.88 (0.81–0.94) | 0.89 (0.84–0.97) | <0.01 |
Waist (cm) | 90.0 (79.0–101.0) | 95.0 (83.0–104.0) | <0.01 |
Hip (cm) | 103.0 (94.0–112.0) | 106.0 (95.0–115.0) | 0.011 |
HDL-cholesterol (mmol/L) | 0.9 ± 0.4 | 0.9 ± 0.3 | 0.11 |
LDL-cholesterol (mmol/L) | 3.4 ± 1.0 | 3.4 ± 1.0 | 0.65 |
Total cholesterol (mmol/L) | 5.0 ± 1.0 | 5.1 ± 1.0 | 0.47 |
Triglycerides (mmol/L) | 1.3 (1.0–1.9) | 1.5 (1.1–2.0) | <0.01 |
Fasting Glucose (mmol/L) | 4.9 (4.5–5.3) | 5.9 (5.7–6.0) | <0.01 |
TNF-α (pg/mL) | 5.1 (1.6–10.2) | 5.7 (2.6–8.1) | 0.89 |
CRP (ng/mL) | 3147.2 (1250.8–5851.2) | 2767.4 (1111.7–5780.0) | 0.54 |
IL-6 (pg/mL) | 3.7 (1.9–11.2) | 2.5 (1.7–6.7) | 0.48 |
IL-1β (pg/mL) | 1.0 (0.8–1.2) | 1.2 (0.6–2.8) | 0.61 |
SNPs | Control | Prediabetes | Unadjusted | Adjusted | |||
---|---|---|---|---|---|---|---|
OR (95%CI) | p-Value | OR (95%CI) | p-Value | ||||
rs11642841 | CC | 332 (42.2) | 124 (37.6) | 1 | 1 | ||
CA | 349 (44.3) | 144 (43.6) | 1.10 (0.83–1.47) | 0.50 | 1.08 (0.81–1.45) | 0.58 | |
AA | 106 (13.5) | 62 (18.8) | 1.57 (1.08–2.28) | 0.02 | 1.50 (1.02–2.21) | 0.03 | |
rs4812829 | GG | 485 (61.6) | 231 (70.0) | 1 | 1 | ||
GA | 273 (34.7) | 83 (25.2) | 0.64 (0.48–0.85) | <0.01 | 0.64 (0.47–0.86) | <0.01 | |
AA | 29 (3.7) | 16 (4.8) | 1.16 (0.62–2.18) | 0.65 | 1.17 (0.62–2.22) | 0.63 | |
rs1801214 | TT | 222 (28.4) | 129 (39.0) | 1 | 1 | ||
TC | 405 (51.7) | 142 (42.9) | 0.60 (0.45–0.81) | <0.01 | 0.60 (0.44–0.80) | <0.01 | |
CC | 156 (19.9) | 60 (18.1) | 0.66 (0.46–0.96) | 0.03 | 0.67 (0.46–0.98) | 0.04 | |
rs5945326 | AA | 628 (79.5) | 282 (85.2) | 1 | 1 | ||
GA | 122 (15.4) | 30 (9.1) | 0.55 (0.36–0.84) | <0.01 | 0.60 (0.39–0.92) | 0.01 | |
GG | 40 (5.1) | 19 (5.7) | 1.06 (0.60–1.86) | 0.84 | 1.03 (0.58–1.83) | 0.92 | |
rs11634397 | GG | 244 (30.8) | 114 (34.4) | 1 | 1 | ||
GA | 402 (50.8) | 142 (42.9) | 0.76 (0.56–1.01) | 0.06 | 0.75 (0.56–1.01) | 0.05 | |
AA | 146 (18.4) | 75 (22.7) | 1.10 (0.77–1.57) | 0.60 | 1.06 (0.74–1.53) | 0.75 |
SNPs | Weight (Kg) | p-Value | BMI (kg/m2) | p-Value | Waist (cm) | p-Value | Hips (cm) | p-Value | WHR | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|---|
rs11634397 | GG | 73.0 (63.0–85.0) | 0.10 | 27.8 (24.2–32.0) | 0.65 | 90.0 (79.0–102.0) | 0.46 | 102.0 (91.0–112.0) | 0.16 | 0.9 (0.8–1.0) | 0.11 |
GA | 73.5 (63.0–84.0) | 27.8 (24.9–32.6) | 90.5 (81.0–102.0) | 104.0 (95.0–113.0) | 0.9 (0.8–0.9) | ||||||
AA | 75.0 (62.5–84.0) | 27.8 (24.3–33.2) | 92.0 (82.0–102.0) | 104.0 (94.0–114.0) | 0.9 (0.8–0.9) | ||||||
rs5945326 | AA | 74.0 (64.0–85.0) | 0.06 | 27.8 (24.6–32.5) | 0.10 | 92.0 (81.0–102.0) | <0.01 | 104.0 (94.0–113.0) | 0.57 | 0.9 (0.8–0.9) | <0.01 AB |
GA | 70.0 (60.0–82.0) | 27.6 (24.2–32.9) | 86.0 (74.0–98.3) | 103.0 (94.0–113.0) | 0.8 (0.8–0.9) | ||||||
GG | 76.5 (64.0–86.0) | 28.0 (25.2–32.4) | 96.0 (80.0–105.0)B | 102.0 (90.0–113.0) | 0.9 (0.9–1.0) | ||||||
rs4812829 | GG | 73.5 (63.0–84.5) | 0.80 | 27.8 (24.8–32.7) | 0.51 | 91.0 (80.0–102.0) | 0.35 | 104.0 (95.0–113.0) | 0.70 | 0.9 (0.8–0.9) | 0.35 |
GA | 73.0 (62.0–84.0) | 27.6 (24.2–32.2) | 92.0 (81.0–103.0) | 103.0 (94.0–113.0) | 0.9 (0.8–0.9) | ||||||
AA | 76.5 (65.5–84.5) | 28.2 (25.3–32.4) | 88.0 (79.0–100.0) | 103.0 (88.0–112.0) | 0.9 (0.8–0.9) | ||||||
rs1801214 | TT | 71.3 (62.0–84.0) | 0.38 | 27.4 (24.3–32.3) | 0.40 | 91.0 (80.0–102.0) | 0.53 | 102.0 (93.5–112.0) | 0.48 | 0.9 (0.8–0.9) | 0.60 |
TC | 74.0 (64.5–84.5) | 28.0 (24.9–32.7) | 92.0 (81.0–103.0) | 104.0 (94.0–114.0) | 0.9 (0.8–0.9) | ||||||
CC | 76.0 (64.0–85.0) | 28.1 (24.6–32.4) | 90.0 (80.0–100.5) | 104.5 (95.0–113.0) | 0.9 (0.8–0.9) | ||||||
rs11642841 | CC | 72.0 (63.0–84.0) | 0.04 | 27.5 (24.2–31.8) | 0.02 A | 89.5 (79.0–102.0) | 0.06 | 102.0 (93.0–112.0) | 0.08 | 0.9 (0.8–0.9) | 0.29 |
CA | 73.0 (62.2–83.0) | 27.7 (24.7–32.0) | 91.0 (81.0–101.0) | 104.0 (95.0–113.0) | 0.9 (0.8–0.9) | ||||||
AA | 77.5 (65.0–88.0)A | 29.8 (25.3–34.4) | 95.0 (82.0–104.0) | 106.5 (95.0–114.0) | 0.9 (0.8–1.0) |
SNPs | TNF-α (pg/mL) | p-Value | CRP (ng/mL) | p-Value | IL-6 (Pg/mL) | p-Value | IL-1β (Pg/mL) | p-Value | |
---|---|---|---|---|---|---|---|---|---|
rs11634397 | GG | 6.4 (3.6–10.2) | 0.05 | 3043.6 (832.8–7571.3) | <0.01 | 1.3 (0.7–3.7) | 0.15 | 0.8 (0.7–2.0) | 0.67 |
GA | 4.4 (1.3–8.1) | 1736.3 (1024.4–4452.0) | 4.8 (2.1–9.5) | 1.2 (0.8–1.7) | |||||
AA | 6.2 (2.2–12.0) | 5389.0 (2767.4–7412.8) B | 5.6 (3.5–105.6) | 0.8 (0.7–12.9) | |||||
rs5945326 | AA | 6.1 (2.2–8.7) | 0.10 | 2841.4 (1178.9–5780.0) | 0.84 | 3.6 (1.7–7.0) | 0.42 | 1.0 (0.7–1.7) | 0.51 |
GA | 3.5 (1.1–4.7) | 3019.2 (957.7–5780.0) | 3.2 (0.9–22.4) | 1.2 (1.0–1.5) | |||||
GG | 6.5 (0.9–12.3) | 4822.6 (2505.9–6129.5) | 14.3 (14.3–14.3) | 1.5 (0.8–2.2) | |||||
rs4812829 | GG | 5.9 (2.1–9.9) | 0.52 | 2841.4 (1286.8–5780.0) | 0.05 | 5.2 (1.7–10.5) | 0.88 | 1.2 (0.8–1.7) | 0.84 |
GA | 5.4 (2.0–7.9) | 3888.5 (1111.7–7884.9) | 3.6 (1.7–7.7) | 0.9 (0.6–3.0) | |||||
AA | 2.7 (1.7–6.4) | 140.9 (121.9–159.9) | 2.7 (2.6–2.9) | 1.2 (1.2–1.2) | |||||
rs1801214 | TT | 6.1 (1.8–8.6) | 0.15 | 3427.2 (1418.9–7412.8) | 0.48 | 4.8 (2.2–6.3) | 0.08 | 0.9 (0.8–1.2) | 0.05 |
TC | 4.1 (1.4–8.4) | 2615.3 (1024.4–5547.7) | 2.9 (1.3–7.7) | 1.0 (0.6–1.7) | |||||
CC | 6.6 (4.2–8.7) | 2869.1 (1250.8–5279.5) | 105.6 (5.6–1493.2) | 12.9 (1.2–98.9) | |||||
rs11642841 | CC | 6.0 (1.3–9.1) | 0.71 | 3748.1 (1500.0–5780.0) | 0.54 | 3.7 (1.3–7.7) | 0.58 | 1.0 (0.8–2.3) | 0.93 |
CA | 5.3 (2.6–8.7) | 2581.7 (991.1–5897.2) | 2.9 (1.3–11.9) | 1.2 (0.8–1.7) | |||||
AA | 3.0 (1.8–7.9) | 2767.4 (839.3–7412.8) | 6.3 (2.1–12.9) | 0.9 (0.7–1.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binjawhar, D.N.; Ansari, M.G.A.; Sabico, S.; Hussain, S.D.; Alenad, A.M.; Alokail, M.S.; Al-Masri, A.A.; Al-Daghri, N.M. Genetic Variants of HNF4A, WFS1, DUSP9, FTO, and ZFAND6 Genes Are Associated with Prediabetes Susceptibility and Inflammatory Markers in the Saudi Arabian Population. Genes 2023, 14, 536. https://doi.org/10.3390/genes14030536
Binjawhar DN, Ansari MGA, Sabico S, Hussain SD, Alenad AM, Alokail MS, Al-Masri AA, Al-Daghri NM. Genetic Variants of HNF4A, WFS1, DUSP9, FTO, and ZFAND6 Genes Are Associated with Prediabetes Susceptibility and Inflammatory Markers in the Saudi Arabian Population. Genes. 2023; 14(3):536. https://doi.org/10.3390/genes14030536
Chicago/Turabian StyleBinjawhar, Dalal N., Mohammed G. A. Ansari, Shaun Sabico, Syed Danish Hussain, Amal M. Alenad, Majed S. Alokail, Abeer A. Al-Masri, and Nasser M. Al-Daghri. 2023. "Genetic Variants of HNF4A, WFS1, DUSP9, FTO, and ZFAND6 Genes Are Associated with Prediabetes Susceptibility and Inflammatory Markers in the Saudi Arabian Population" Genes 14, no. 3: 536. https://doi.org/10.3390/genes14030536
APA StyleBinjawhar, D. N., Ansari, M. G. A., Sabico, S., Hussain, S. D., Alenad, A. M., Alokail, M. S., Al-Masri, A. A., & Al-Daghri, N. M. (2023). Genetic Variants of HNF4A, WFS1, DUSP9, FTO, and ZFAND6 Genes Are Associated with Prediabetes Susceptibility and Inflammatory Markers in the Saudi Arabian Population. Genes, 14(3), 536. https://doi.org/10.3390/genes14030536