Next Article in Journal
Autophagy in Age-Associated Neurodegeneration
Previous Article in Journal
High-Throughput GLP-Capable Target Cell Visualization Assay for Measuring Cell-Mediated Cytotoxicity
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessFeature PaperReview
Cells 2018, 7(5), 36; https://doi.org/10.3390/cells7050036

Reactive Oxygen Species, Superoxide Dimutases, and PTEN-p53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem/Stromal Cells Regulation

1
Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
2
Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara 631-8501, Japan
3
Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
*
Author to whom correspondence should be addressed.
Received: 9 March 2018 / Revised: 22 April 2018 / Accepted: 28 April 2018 / Published: 1 May 2018
View Full-Text   |   Download PDF [883 KB, uploaded 3 May 2018]   |  

Abstract

Mesenchymal stromal/stem cells (MSCs) are multipotent cells that can differentiate to various specialized cells, which have the potential capacity to differentiate properly and accelerate recovery in damaged sites of the body. This stem cell technology has become the fundamental element in regenerative medicine. As reactive oxygen species (ROS) have been reported to adversely influence stem cell properties, it is imperative to attenuate the extent of ROS to the promising protective approach with MSCs’ regenerative therapy. Oxidative stress also affects the culture expansion and longevity of MSCs. Therefore, there is great need to identify a method to prevent oxidative stress and replicative senescence in MSCs. Phosphatase and tensin homologue deleted on chromosome 10/Protein kinase B, PKB (PTEN/AKT) and the tumor suppressor p53 pathway have been proven to play a pivotal role in regulating cell apoptosis by regulating the oxidative stress and/or ROS quenching. In this review, we summarize the current research and our view of how PTEN/AKT and p53 with their partners transduce signals downstream, and what the implications are for MSCs’ biology. View Full-Text
Keywords: p53; PTEN; AKT; MDM2; superoxide dismutase; SOD; reactive oxygen species; ROS; mesenchymal stromal/stem cell; MSC; stemness p53; PTEN; AKT; MDM2; superoxide dismutase; SOD; reactive oxygen species; ROS; mesenchymal stromal/stem cell; MSC; stemness
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Matsuda, S.; Nakagawa, Y.; Kitagishi, Y.; Nakanishi, A.; Murai, T. Reactive Oxygen Species, Superoxide Dimutases, and PTEN-p53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem/Stromal Cells Regulation. Cells 2018, 7, 36.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Cells EISSN 2073-4409 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top