Agronomy 2013, 3(1), 28-42; doi:10.3390/agronomy3010028
Article

Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage

1email, 2,* email, 1email, 1email and 1email
Received: 25 October 2012; in revised form: 10 January 2013 / Accepted: 10 January 2013 / Published: 15 January 2013
(This article belongs to the Special Issue Weed Management and Herbicide Resistance)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: A three year field experiment was conducted to evaluate the role of soil inversion, cover crops and spring tillage methods for Palmer amaranth between-row (BR) and within-row (WR) management in glufosinate-resistant cotton. Main plots were two soil inversion treatments: fall inversion tillage (IT) and non-inversion tillage (NIT). Subplots were three cover treatments: crimson clover, cereal rye or none (i.e., winter fallow); and the sub subplots were four secondary spring tillage methods: disking followed by (fb) cultivator (DCU), disking fb chisel plow (DCH), disking fb disking (DD) and no tillage (NT). Averaged over years and soil inversion, the crimson clover produced maximum cover biomass (4390 kg ha−1) fb cereal rye (3698 kg ha−1) and winter fallow (777 kg ha−1). Two weeks after planting (WAP) and before the postemergence (POST) application, Palmer amaranth WR and BR density were two- and four-times less, respectively, in IT than NIT. Further, Palmer amaranth WR and BR density were reduced two-fold following crimson clover and cereal rye than following winter fallow at 2 WAP. Without IT, early season Palmer amaranth densities were 40% less following DCU, DCH and DD, when compared with IT. Following IT, no spring tillage method improved Palmer amaranth control. The timely application of glufosinate + S-metolachlor POST tank mixture greatly improved Palmer amaranth control in both IT and NIT systems. The highest cotton yields were obtained with DD following cereal rye (2251 kg ha−1), DD following crimson clover (2213 kg ha−1) and DD following winter fallow (2153 kg ha−1). On average, IT cotton yields (2133 kg ha−1) were 21% higher than NIT (1766 kg ha−1). Therefore, from an integrated weed management standpoint, an occasional fall IT could greatly reduce Palmer amaranth emergence on farms highly infested with glyphosate-resistant Palmer amaranth. In addition, a cereal rye or crimson clover cover crop can effectively reduce early season Palmer amaranth emergence in both IT and NIT systems. For effective and season-long control of Palmer amaranth, one or more POST applications of glufosinate + residual herbicide as tank mixture may be needed in a glufosinate-based cotton production system.
Keywords: cover crops; glufosinate-tolerant cotton; soil inversion; spring tillage methods; specifically
PDF Full-text Download PDF Full-Text [217 KB, uploaded 15 January 2013 13:31 CET]

Export to BibTeX |
EndNote


MDPI and ACS Style

Aulakh, J.S.; Price, A.J.; Enloe, S.F.; Wehtje, G.; Patterson, M.G. Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage. Agronomy 2013, 3, 28-42.

AMA Style

Aulakh JS, Price AJ, Enloe SF, Wehtje G, Patterson MG. Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage. Agronomy. 2013; 3(1):28-42.

Chicago/Turabian Style

Aulakh, Jatinder S.; Price, Andrew J.; Enloe, Stephen F.; Wehtje, Glenn; Patterson, Michael G. 2013. "Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage." Agronomy 3, no. 1: 28-42.

Agronomy EISSN 2073-4395 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert