Effects of Combined Long-Term Straw Return and Nitrogen Fertilization on Wheat Productivity and Soil Properties in the Wheat-Maize-Soybean Rotation System in the Pannonian Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.1.1. Location and Soil Characteristics
2.1.2. Soil Properties before Establishing the Experiment
2.1.3. Climate Conditions
2.2. Establishment and Management of the Field Trial
2.2.1. A Brief Overview of the History and Significance of the Long-Term ISDV Trial
2.2.2. Changes in the Methodology of a Field Experiment
2.3. Experimental Design
2.4. Soil Sampling
Laboratory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Grain, Straw, and Total Above–Ground Biomass Yield of Wheat
3.2. Effect of Years, Straw Management Combined with N-Fertilization, and Varieties on Wheat GY
Effect of Long-Term Straw Management Combined with N-fertilization on Wheat Yield over 20 Years
3.3. Effect of Long-Term Straw Management Combined with N-fertilization on Soil Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Campion, A.; Oury, F.X.; Heumez, E.; Rolland, B. Conventional versus organic farming systems: Dissecting comparisons to improve cereal organic breeding strategies. Org. Agric. 2020, 10, 63–74. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Huang, H.; Qu, P.; Wei, Z. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavailab. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Poudel, D.D.; Horwath, W.R.; Lanini, W.T.; Temple, S.R.; van Bruggen, A.H.C. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ. 2002, 90, 125–137. [Google Scholar] [CrossRef]
- STAT.YEARB.SERB. Statistical Yearbook of the Republic of Serbia; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2021. Available online: www.stat.gov.rs (accessed on 12 March 2022).
- Kastori, R.; Maksimović, I.; Putnik, D.M. Environmental aspects of burning field residues for use as an alternative fuel. Field Veg. Crop Res. 2012, 49, 313–319. [Google Scholar] [CrossRef]
- Jin, Z.; Shah, T.; Zhang, L.; Liu, H.; Peng, S.; Nie, L. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef]
- Cui, H.; Luo, Y.; Chen, J.; Jin, M.; Li, Y.; Wang, Z. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. Eur. J. Agron. 2022, 133, 126436. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.; Dai, S.; Dong, X. Current status and environment impact of direct straw return in China’s cropland—A review. Ecotoxicol. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J.D. Carbon losses from all soils across England and Wales 1978–2003. Nature 2005, 437, 245–248. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 2002, 116, 353–362. [Google Scholar] [CrossRef]
- Islam, M.U.I.; Guo, Z.; Jiang, F.; Peng, X. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crop. Res. 2022, 279, 108447. [Google Scholar] [CrossRef]
- Jaćimović, G.; Aćin, V.; Mirosavljević, M.; Crnobarac, J.; Marinković, B.; Latković, D. Long-term effects of straw incorporation and increasing doses of nitrogen on the wheat yield. In Proceedings of the VII International Scientific Agricultural Symposium “Agrosym 2016”, Jahorina, Bosnia and Herzegovina, 6–9 October 2016; pp. 644–649. Available online: http://agrosym.ues.rs.ba/archive (accessed on 20 September 2021).
- Bogdanović, D.; Ubavić, M.; Dozet, D. Chemical properties of Vojvodina soils and the supply of essential macro nutrients. In Heavy Metals and Pesticides in Soils; Kastori, R., Ed.; University of Novi Sad, Faculty of Agriculture and Institute of Field and Vegetable Crops: Novi Sad, Serbia, 1993; pp. 197–215. (In Serbian) [Google Scholar]
- Sekulić, P.; Ninkov, J.; Hristov, N.; Vasin, J.; Šeremešić, S.; Zeremski-Škorić, T. Organic Matter Content in Vojvodina Soils and the Possibility of Using Harvest Residues as Renewable Source of Energy. Field Veg. Crop Res. 2010, 47, 591–598, (Serbian article with English abstract). Available online: https://fiver.ifvcns.rs/handle/123456789/876 (accessed on 25 March 2022).
- Ličina, V.; Nešić, L.J.; Belić, M.; Hadžić, V.; Sekulić, P.; Vasin, J.; Ninkov, J. The Soils of Serbia and Their Degradation. Field Veg. Crop Res. 2011, 48, 285–290. [Google Scholar] [CrossRef]
- Šeremešić, S.; Ćirić, V.; Djalović, I.; Vasin, J.; Zeremski, T.; Siddique, K.H.; Farooq, M. Long-term winter wheat cropping influenced soil organic carbon pools in different aggregate fractions of Chernozem soil. Arch. Agron. Soil Sci. 2020, 66, 2055–2066. [Google Scholar] [CrossRef]
- Li, J.; Gan, G.; Chen, X.; Zou, J. Effects of Long-Term Straw Management and Potassium Fertilization on Crop Yield, Soil Properties, and Microbial Community in a Rice–Oilseed Rape Rotation. Agriculture 2021, 11, 1233. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, M.; Li, Y.; Zhang, X.; Wang, G.; Jin, J.; Ding, G.; Zeng, X.; Liu, X. Crop Residue Return Rather Than Organic Manure Increases Soil Aggregate Stability under Corn–Soybean Rotation in Surface Mollisols. Agriculture 2022, 12, 265. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, K.; Li, K.; Zheng, C.; Li, B. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Soil Tillage Res. 2017, 165, 302–314. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Zhao, Y.; Yang, B.; Ding, R.; Wang, J.; Nie, J. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop. Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, B.; Liu, S.; Qi, J.; Wang, X.; Pu, C.; Li, S.; Zhang, X.; Yang, X.; Lal, R.; et al. Sustaining crop production in China’s cropland by crop residue retention: A meta-analysis. Land Degrad. Dev. 2020, 31, 694–709. [Google Scholar] [CrossRef]
- Sui, P.; Tian, P.; Lian, H.; Wang, Z.; Ma, Z.; Qi, H.; Mei, N.; Sun, Y.; Wang, Y.; Su, Y.; et al. Straw Incorporation Management Affects Maize Grain Yield through Regulating Nitrogen Uptake, Water Use Efficiency, and Root Distribution. Agronomy 2020, 10, 324. [Google Scholar] [CrossRef]
- Shi, J.; Wang, S.; Li, S.; Tian, X. Increasing soil organic carbon sequestration and yield stability by no-tillage and straw-returning in wheat–maize rotation. Agron. J. 2022, 114, 1534–1545. [Google Scholar] [CrossRef]
- Li, Y.; Feng, H.; Dong, Q.; Xia, L.; Li, J.; Li, C.; Zang, H.; Andersen, M.N.; Olesen, J.E.; Jørgensen, U.; et al. Ammoniated straw incorporation increases wheat yield, yield stability, soil organic carbon and soil total nitrogen content. Field Crop. Res. 2022, 284, 108558. [Google Scholar] [CrossRef]
- Macholdt, J.; Piepho, H.P.; Honermeier, B.; Perryman, S.; Macdonald, A.; Poulton, P. The effects of cropping sequence, fertilization and straw management on the yield stability of winter wheat (1986–2017) in the Broadbalk Wheat Experiment, Rothamsted, UK. J. Agric. Sci. 2020, 158, 65–79. [Google Scholar] [CrossRef]
- Jaćimović, G.; Aćin, V.; Crnobarac, J.; Latković, D.; Manojlović, M. Effects of crop residue incorporation on the wheat yield in a long-term experiment. Ann. Agron. 2017, 41, 1–8, (Serbian article with English abstract). [Google Scholar]
- Latković, D.; Crnobarac, J.; Jaćimović, G.; Visković, J.; Dunđerski, D. The importance of harvest residues in corn production. Zemlj. I Biljka/Soil Plant 2019, 68, 33–43. [Google Scholar] [CrossRef]
- Htun, Y.M.; Tong, Y.; Gao, P.; Xiaotang, J. Coupled Effects of Straw and Nitrogen Management on N2O and CH4 Emissions of Rainfed Agriculture in Northwest China. Atmos. Environ. 2017, 157, 156–166. [Google Scholar] [CrossRef]
- Gao, L.; Li, W.; Ashraf, U.; Lu, W.; Li, Y.; Li, C.; Li, G.; Li, G.; Hu, J. Nitrogen Fertilizer Management and Maize Straw Return Modulate Yield and Nitrogen Balance in Sweet Corn. Agronomy 2020, 10, 362. [Google Scholar] [CrossRef]
- Bentsen, N.S.; Felby, C.; Thorsen, B.J. Agricultural residue production and potentials for energy and materials services. Prog. Energy Combust. Sci. 2014, 40, 59–73. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Liu, X.; Huang, G.; Xiao, W.; Han, L. The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Manag. 2020, 110, 87–97. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Dai, H.; Cui, J.; Wang, L.; Sui, P. Effects of Organic Amendments on the Improvement of Soil Nutrients and Crop Yield in Sandy Soils during a 4-Year Field Experiment in Huang-Huai-Hai Plain, Northern China. Agronomy 2021, 11, 157. [Google Scholar] [CrossRef]
- Zhao, S.; Li, K.; Zhou, W.; Qiu, S.; Huang, S.; He, P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 2016, 216, 82–88. [Google Scholar] [CrossRef]
- Guan, X.K.; Wei, L.; Turner, N.C.; Ma, S.C.; Yang, M.D.; Wang, T.C. Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production. J. Clean. Prod. 2020, 250, 119514. [Google Scholar] [CrossRef]
- Srour, A.Y.; Ammar, H.A.; Subedi, A.; Pimentel, M.; Cook, R.L.; Bond, J.; Fakhoury, A.M. Microbial Communities Associated with Long-Term Tillage and Fertility Treatments in a Corn-Soybean Cropping System. Front. Microbiol. 2020, 11, 18. [Google Scholar] [CrossRef]
- Liu, N.; Li, Y.; Cong, P.; Wang, J.; Guo, W.; Pang, H.; Zhang, L. Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain. Soil Tillage Res. 2021, 205, 104772. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Qi, G.; Kang, Y.; Yin, M.; Ma, Y.; Bai, Y.; Wang, J. Yield Responses of Wheat to Crop Residue Returning in China: A Meta-Analysis. Crop Sci. 2019, 59, 2185–2200. [Google Scholar] [CrossRef]
- Liu, P.; He, J.; Li, H.; Wang, Q.; Lu, C.; Zheng, K.; Liu, W.; Zhao, H.; Lou, S. Effect of Straw Retention on Crop Yield, Soil Properties, Water Use Efficiency and Greenhouse Gas Emission in China: A Meta-Analysis. Int. J. Plant Prod. 2019, 13, 347–367. [Google Scholar] [CrossRef]
- Lu, X. A meta-analysis of the effects of crop residue return on crop yields and water use efficiency. PLoS ONE 2020, 15, e0231740. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, P.; Mei, F.; Ling, Y.; Qiao, Y.; Liu, C.; Leghari, S.J.; Guan, X.; Wang, T. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. J. Environ. Manag. 2021, 288, 112391. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, M.; Wang, W.; Sun, X.; Zhao, K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil Tillage Res. 2011, 113, 70–73. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Dai, K.; Zhang, D.; Feng, Z.; Zhao, Q.; Wu, X.; Jin, K.; Cai, D.; Oenema, O.; et al. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crop. Res. 2012, 132, 106–116. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, M.; Sun, N.; Xiong, W.; Huang, S.; Wu, L. Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma 2016, 265, 176–186. [Google Scholar] [CrossRef]
- Hijbeek, R.; Pronk, A.A.; van Ittersum, M.K.; Verhagen, A.; Ruysschaert, G.; Bijttebier, J.; Zavattaro, L.; Bechini, L.; Schlatter, N.; ten Berge, H.F.M. Use of organic inputs by arable farmers in six agro-ecological zones across Europe: Drivers and barriers. Agric. Ecosyst. Environ. 2019, 275, 42–53. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, G.; Wang, H.; Lu, D.; Chen, X.; Zhou, J. Effects of Full Straw Incorporation on Soil Fertility and Crop Yield in Rice-Wheat Rotation for Silty Clay Loamy Cropland. Agronomy 2019, 9, 133. [Google Scholar] [CrossRef]
- Seremesic, S.; Ćirić, V.; Milošev, D.; Vasin, J.; Djalovic, I. Changes in soil carbon stock under the wheat-based cropping systems at Vojvodina province of Serbia. Arch. Agron. Soil Sci. 2016, 63, 388–402. [Google Scholar] [CrossRef]
- Manojlović, M.; Aćin, V.; Šeremešić, S. Long-term effects of agronomic practices on the soil organic carbon sequestration in Chernozem. Arch. Agron. Soil Sci. 2008, 54, 353–367. [Google Scholar] [CrossRef]
- Lian, H.; Wang, Z.; Li, Y.; Xu, H.; Zhang, H.; Gong, X.; Qi, H.; Jiang, Y. Straw Strip Return Increases Soil Organic Carbon Sequestration by Optimizing Organic and Humus Carbon in Aggregates of Mollisols in Northeast China. Agronomy 2022, 12, 784. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Xu, M.; Feng, G.; Zhang, W.; Lu, C. Crop yield and soil organic matter after long-term straw return to soil in China. Nutr. Cycl. Agroecosyst. 2015, 102, 371–381. [Google Scholar] [CrossRef]
- Dolan, M.S.; Clapp, C.E.; Allmaras, R.R.; Baker, J.M.; Molina, J.A.E. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Tillage Res. 2006, 89, 221–231. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Yuan, G.; Huan, W.; Song, H.; Lu, D.; Chen, X.; Wang, H.; Zhou, J. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice–wheat system. Soil Tillage Res. 2021, 209, 104958. [Google Scholar] [CrossRef]
- Powlson, D.S.; Glendining, M.J.; Coleman, K.; Whitmore, A.P. Implications for Soil Properties of Removing Cereal Straw: Results from Long-Term Studies. Agron. J. 2011, 103, 279–287. [Google Scholar] [CrossRef]
- Tian, P.; Sui, P.; Lian, H.; Wang, Z.; Meng, G.; Sun, Y.; Wang, Y.; Su, Y.; Ma, Z.; Qi, H.; et al. Maize Straw Returning Approaches Affected Straw Decomposition and Soil Carbon and Nitrogen Storage in Northeast China. Agronomy 2019, 9, 818. [Google Scholar] [CrossRef]
- Suriyagoda, L.; De Costa, W.A.J.M.; Lambers, H. Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils. Plant Soil 2014, 384, 53–68. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G.; Wang, H. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ. Int. 2019, 132, 105092. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Yang, Y.; Ouyang, Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manag. 2004, 70, 67–81. [Google Scholar] [CrossRef]
- Yu, C.; Xie, X.; Yang, H.; Yang, L.; Li, W.; Wu, K.; Zhang, W.; Feng, C.; Li, D.; Wu, Z.; et al. Effect of straw and inhibitors on the fate of nitrogen applied to paddy soil. Sci. Rep. 2020, 10, 21582. [Google Scholar] [CrossRef]
- Vidojević, D. (Ed.) The State of Soil in the Republic of Serbia 2018–2019; Ministry of Agriculture and Environmental Protection—Environmental Protection Agency: Belgrade, Republic of Serbia, 2020; ISSN 2466–2968.
- Benka, P.; Ćirić, V. Conversion Legend of Soil Map of Vojvodina (Serbia) to WRB Classification, Abstract book. In Proceedings of the International Conference “Global Soil Map 2017”, Moscow, Russia, 4–6 July 2017. [Google Scholar]
- Pavlović, P.; Kostić, N.; Karadžić, B.; Mitrović, M. The Soils of Serbia. In International Union of Soil Sciences; World Soils Book Series; Hartemink, A.E., Ed.; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Malešević, M. Importance of Temperature and Precipitations for Determining the Optimal Amount of Nitrogen and Their Influence on the Yield of Winter Wheat (Triticum aestivum L.). Ph.D. Thesis, University of Novi Sad, Novi Sad, Serbia, 1989. (In Serbian, with English abstract). [Google Scholar]
- Republic Hydrometeorolgical Service of Serbia (RHSS). Available online: https://www.hidmet.gov.rs/index_eng.php (accessed on 25 March 2022).
- Bruin, P. The Expansion of Soil Fertility Research in Relation to Its Importance for the Improvement of Farming Practice; Institute of Soil Fertility: Haren/Groningen, The Netherlands, 1974; pp. 1–20.
- Kanwar, J.S. Bulletin of the International Society of Soil Science; No. 56, 1979/2; International Society of Soil Science, Duivendaal: Wageningen, The Netherlands, 1979; pp. 1–68. [Google Scholar]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. Institute for Standardization of Serbia: Belgrade, Serbia, 2017.
- Mirosavljević, M.; Momčilović, V.; Živančev, D.; Aćin, V.; Jocković, B.; Mikić, S.; Takač, V.; Denčić, S. Genetic improvement of grain yield and bread-making quality of winter wheat over the past 90 years under the Pannonian Plain conditions. Euphytica 2020, 216, 184. [Google Scholar] [CrossRef]
- Lehtinen, T.; Schlatter, N.; Baumgarten, A.; Bechini, L.; Krüger, J.; Grignani, C.; Zavattaro, L.; Costamagna, C.; Spiegel, H. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use Manag. 2014, 30, 524–538. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, B.; Lu, F.; Zhang, G.; Wang, X.; Ouyang, Z. Straw Incorporation Strategy on Cereal Crop Yield in China. Crop Sci. 2015, 55, 1773–1781. [Google Scholar] [CrossRef]
- Yang, Z.C.; Zhao, N.; Huang, F.; Lv, Y.Z. Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain. Soil Tillage Res. 2015, 146, 47–52. [Google Scholar] [CrossRef]
- Jakšić, S.; Ninkov, J.; Milić, S.; Vasin, J.; Banjac, D.; Jakšić, D.; Živanov, M. The State of Soil Organic Carbon in Vineyards as Affected by Soil Types and Fertilization Strategies (Tri Morave Region, Serbia). Agronomy 2021, 11, 9. [Google Scholar] [CrossRef]
Soil Chemical Properties | |||||||
---|---|---|---|---|---|---|---|
Depth (cm) | pH | CaCO3 (vol. %) | Humus (mas. %) | Total N (mas. %) | AL-P2O5 | AL-K2O | |
in KCl | in H2O | (mg 100 g−1 of soil) | |||||
0–35 | 7.00 | 7.35 | 2.1 | 3.14 | 0.184 | 13.2 | 19.5 |
35–70 | 7.20 | 7.40 | 4.5 | 2.90 | 0.179 | 9.7 | 20.0 |
70–95 | 7.40 | 7.80 | 8.5 | 1.88 | 0.108 | 3.8 | 13.5 |
>95 | 7.40 | 7.91 | 27.9 | 1.06 | 0.080 | 3.8 | 9.0 |
Soil Texture | |||||||
0–35 | Rough sand (%) (2–0.2 mm) | Fine sand (%) (0.2–0.02 mm) | Silt (%) (0.02–0.002 mm) | Clay (%) (<0.002 mm) | Texture class | ||
0.87 | 36.15 | 32.07 | 30.91 | Loamy clay |
SN-Treatments | Application of: | ||||
---|---|---|---|---|---|
Straw (S) | Nitrogen (N) | SN | Definition | N 1 | P2O5, K2O 2 |
S1 With straw return | N00 | S1N00 | Absolute control—plot with straw return, without N-fertilization, and without the addition of N for decomposition of crop residues. | – | 80 + 80 kg ha−1 l/2 before plowing in autumn + 1/2 prior to sowing |
N0 | S1N0 | Control plot—with straw return, without N-fertilization + additional 10 kg of N from mineral fertilizer per 1 t of straw to prevent N-depression. | – | ||
N60 | S1N60 | 60 kg N ha−1 applied in combination with straw return + additional 10 kg of N from mineral fertilizer per 1 t of straw. | 1/2 before plowing in autumn + 1/2 as one top-dress application in spring | ||
N90 | S1N90 | 90 kg N ha−1 applied in combination with straw return + additional 10 kg of N from mineral fertilizer per 1 t of straw. | |||
N120 | S1N120 | 120 kg N ha−1 applied in combination with straw return + additional 10 kg of N from mineral fertilizer per 1 t of straw. | |||
N150 | S1N150 | 150 kg N ha−1 applied in combination with straw return + additional 10 kg of N from mineral fertilizer per 1 t of straw. | |||
N180 | S1N180 | 180 kg N ha−1 applied in combination with straw return + additional 10 kg of N from mineral fertilizer per 1 t of straw. | |||
S0 Without straw return | N0 | S0N0 | Control plot—without straw return and N-fertilization. | – | |
N90 | S0N90 | 90 kg N ha−1 without straw return. | Same as in S1 | ||
N150 | S0N150 | 150 kg N ha−1 without straw return. |
Year (Y) | SN-Treatments * | Average (Y) ** | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
S1—With Straw Return | S0—Without Straw Return | ||||||||||
S1N00 | S1N0 | S1N60 | S1N90 | S1N120 | S1N150 | S1N180 | S0N0 | S0N90 | S0N150 | ||
1995/96 | 2.08 ± 0.05 g | 2.89 ± 0.31 e | 5.07 ± 0.37 d | 5.59 ± 0.15 bc | 5.79 ± 0.12 ab | 5.84 ± 0.13 ab | 6.06 ± 0.09 a | 2.56 ± 0.15 f | 4.95 ± 0.13 d | 5.44 ± 0.16 c | 4.63 ± 1.51 J |
1996/97 | 3.15 ± 0.16 f | 3.43 ± 0.12 f | 4.82 ± 0.20 e | 5.24 ± 0.18 d | 5.66 ± 0.14 c | 5.97 ± 0.20 b | 6.32 ± 0.26 a | 3.29 ± 0.26 f | 5.18 ± 0.22 d | 5.84 ± 0.20 bc | 4.89 ± 1.19 I |
1997/98 | 2.74 ± 0.09 e | 3.34 ± 0.39 d | 5.90 ± 0.24 c | 6.61 ± 0.29 b | 6.97 ± 0.21 b | 7.42 ± 0.31 a | 7.46 ± 0.29 a | 3.25 ± 0.58 d | 6.01 ± 0.32 c | 6.95 ± 0.27 b | 5.66 ± 1.84 F |
1999/00 | 4.05 ± 0.50 d | 4.40 ± 0.16 d | 6.52 ± 0.13 c | 6.84 ± 0.24 bc | 7.11 ± 0.23 b | 7.24 ± 0.46 ab | 7.62 ± 0.41 a | 4.15 ± 0.33 d | 6.47 ± 0.31 c | 6.89 ± 0.22 bc | 6.13 ± 1.37 D |
2000/01 | 3.42 ± 0.32 c | 3.55 ± 0.57 c | 6.00 ± 0.17 a | 6.32 ± 010 a | 6.30 ± 0.17 a | 6.35 ± 0.07 a | 6.28 ± 0.18 a | 3.34 ± 0.27 c | 5.33 ± 0.25 b | 5.61 ± 0.24 b | 5.25 ± 1.29 G |
2001/02 | 3.35 ± 0.11 d | 3.75 ± 0.22 c | 4.49 ± 0.12 a | 4.51 ± 0.18 a | 4.44 ± 0.18 a | 4.34 ± 0.11 ab | 4.51 ± 0.22 a | 3.64 ± 0.18 c | 4.30 ± 0.10 ab | 4.16 ± 0.09 b | 4.15 ± 0.42 K |
2002/03 | 3.00 ± 0.17 ab | 3.04 ± 0.17 ab | 3.22 ± 0.09 a | 3.14 ± 0.19 ab | 2.96 ± 0.27 ab | 3.15 ± 0.33 ab | 2.93 ± 0.15 bc | 2.58 ± 0.27 d | 2.69 ± 0.06 cd | 2.62 ± 0.18 d | 2.93 ± 0.23 N |
2003/04 | 4.55 ± 0.15 e | 4.69 ± 0.24 de | 5.50 ± 0.22 ab | 5.50 ± 0.13 ab | 5.54 ± 0.38 ab | 5.63 ± 0.44 a | 5.86 ± 0.27 a | 4.05 ± 0.39 f | 5.05 ± 0.16 cd | 5.26 ± 0.35 bc | 5.16 ± 0.57 GH |
2004/05 | 2.23 ± 0.14 c | 2.61 ± 0.45 c | 3.96 ± 0.33 b | 4.55 ± 0.15 a | 4.57 ± 0.15 a | 4.77 ± 0.11 a | 4.60 ± 0.25 a | 2.44 ± 0.13 c | 4.41 ± 0.22 a | 4.57 ± 0.37 a | 3.87 ± 1.02 L |
2005/06 | 3.89 ± 0.34 d | 3.66 ± 0.42 d | 5.16 ± 0.52 c | 5.55 ± 0.11 bc | 5.90 ± 0.17 ab | 6.14 ± 0.26 a | 6.08 ± 0.49 a | 3.50 ± 0.14 d | 5.36 ± 0.17 c | 6.02 ± 0.21 a | 5.13 ± 1.05 H |
2006/07 | 3.66 ± 0.16 f | 3.56 ± 0.49 fg | 4.52 ± 0.28 e | 5.21 ± 0.41 cd | 5.43 ± 0.36 bc | 5.84 ± 0.50 ab | 5.91 ± 0.27 a | 3.13 ± 0.40 g | 4.83 ± 0.25 de | 5.21 ± 0.36 cd | 4.73 ± 0.98 J |
2007/08 | 2.56 ± 0.11 e | 2.32 ± 0.11 e | 3.69 ± 0.37 d | 4.16 ± 0.34 a–c | 4.25 ± 0.15 a–c | 4.41 ± 0.38 ab | 4.56 ± 0.27 a | 2.58 ± 0.27 e | 3.87 ± 0.25 cd | 4.03 ± 0.39 b–d | 3.64 ± 0.84 M |
2011/12 | 3.21 ± 0.31 fg | 3.48 ± 0.17 ef | 4.21 ± 0.22 a–c | 4.27 ± 0.25 ab | 4.16 ± 0.17 a–c | 4.39 ± 0.26 a | 3.97 ± 0.26 b–d | 3.10 ± 0.21 g | 3.77 ± 0.13 de | 3.93 ± 0.05 cd | 3.85 ± 0.45 L |
2012/13 | 5.45 ± 0.15 bc | 5.56 ± 0.46 bc | 6.52 ± 0.33 a | 6.63 ± 0.43 a | 6.76 ± 0.88 a | 6.74 ± 1.01 a | 6.86 ± 0.80 a | 5.13 ± 0.92 c | 5.82 ± 0.58 b | 5.80 ± 0.64 b | 6.13 ± 0.64 D |
2014/15 | 5.37 ± 0.07 de | 5.17 ± 0.32 ef | 6.18 ± 0.46 a–c | 6.69 ± 0.86 a | 6.51 ± 0.30 ab | 6.65 ± 0.82 a | 6.06 ± 0.41 a–d | 4.52 ± 0.29 f | 5.79 ± 0.34 c–e | 5.89 ± 0.21 b–d | 5.88 ± 0.70 E |
2015/16 | 6.24 ± 0.15 d | 6.54 ± 0.41 cd | 7.45 ± 0.42 a | 7.36 ± 0.15 ab | 7.39 ± 0.55 ab | 7.29 ± 0.70 ab | 7.45 ± 0.64 a | 6.25 ± 0.19 d | 7.16 ± 048 ab | 6.97 ± 0.61 bc | 7.01 ± 0.49 A |
2016/17 | 5.70 ± 0.60 c | 5.89 ± 0.65 bc | 6.36 ± 0.42 ab | 6.90 ± 0.22 a | 6.46 ± 0.30 ab | 6.31 ± 0.50 a–c | 6.53 ± 0.68 a | 5.72 ± 0.06 c | 6.45 ± 0.10 ab | 6.30 ± 0.21 a–c | 6.26 ± 0.38 C |
2017/18 | 5.31 ± 0.10 b–d | 5.47 ± 0.26 a–d | 5.79 ± 0.87 a–c | 5.97 ± 0.62 a | 5.86 ± 0.25 ab | 5.91 ± 0.43 ab | 5.66 ± 0.50 a–c | 4.95 ± 0.29 d | 5.21 ± 0.19 cd | 5.43 ± 0.30 a–d | 5.56 ± 0.34 F |
2018/19 | 4.98 ± 0.06 de | 5.14 ± 0.27 de | 5.85 ± 0.55 a–c | 6.10 ± 0.72 ab | 6.13 ± 0.85 ab | 6.24 ± 0.81 a | 6.17 ± 1.11 ab | 4.63 ± 0.98 e | 5.37 ± 0.75 cd | 5.60 ± 0.31 b–d | 5.62 ± 0.57 F |
2019/20 | 5.32 ± 0.10 e | 5.47 ± 0.13 e | 6.88 ± 0.55 b–d | 7.59 ± 0.14 a | 7.28 ± 0.22 ab | 7.22 ± 0.35 a–c | 7.15 ± 0.38 bc | 5.13 ± 0.49 e | 6.74 ± 0.39 d | 6.82 ± 0.29 cd | 6.56 ± 0.90 B |
Avg. (SN) | 4.01 F | 4.20 E | 5.40 C | 5.74 B | 5.77 B | 5.89 A | 5.90 A | 3.90 G | 5.24 D | 5.47 C | 5.15 |
SD (t ha−1) | 1.26 | 1.21 | 1.14 | 1.18 | 1.19 | 1.16 | 1.24 | 1.12 | 1.09 | 1.14 | 1.07 |
CV (%) | 31.5 | 28.8 | 21.1 | 20.6 | 20.5 | 19.6 | 21.0 | 28.8 | 20.8 | 20.9 | 20.8 |
Max. (t ha−1) | 6.24 | 6.54 | 7.45 | 7.59 | 7.39 | 7.42 | 7.62 | 6.25 | 7.16 | 6.97 | 7.01 |
Min. (t ha−1) | 2.08 | 2.32 | 3.22 | 3.14 | 2.96 | 3.15 | 2.93 | 2.44 | 2.69 | 2.62 | 2.93 |
SN-Treatments | Soil Chemical Properties * | ||||||||
---|---|---|---|---|---|---|---|---|---|
Straw | SN | pH | CaCO3 | Humus | TN | P2O5 | K2O | SOC | |
(KCl) | (H2O) | (%) | (%) | (%) | (mg 100 g−1) | (g kg−1) | |||
S1 With straw return | S1N00 | 7.16 | 7.46 | 4.52 | 2.95 e | 0.173 f | 29.69 cd | 27.62 cd | 12.864 cd |
S1N0 | 7.18 | 7.51 | 4.63 | 3.13 d | 0.184 de | 31.59 b–d | 28.72 bc | 13.234 c | |
S1N60 | 7.19 | 7.52 | 4.58 | 3.23 bc | 0.189 b–d | 32.29 a–c | 29.69 ab | 13.168 c | |
S1N90 | 7.18 | 7.54 | 4.69 | 3.31 ab | 0.194 b | 34.57 a | 29.99 a | 14.164 b | |
S1N120 | 7.16 | 7.50 | 4.97 | 3.33 a | 0.201 a | 33.61 ab | 28.75 a–c | 14.737 a | |
S1N150 | 7.22 | 7.57 | 5.22 | 3.25 a–c | 0.191 bc | 32.90 ab | 29.63 ab | 14.649 a | |
S1N180 | 7.19 | 7.54 | 5.20 | 3.23 bc | 0.190 bc | 33.39 ab | 27.92 c | 14.691 a | |
Avg. ** | 7.18 | 7.53 | 4.88 | 3.24 A | 0.191 A | 33.06 A | 29.12 A | 14.107 A | |
S0 Without straw return | S0N0 | 7.15 | 7.55 | 5.17 | 2.97 e | 0.183 de | 28.83 de | 26.35 e | 12.734 d |
S0N90 | 7.15 | 7.53 | 5.40 | 3.13 d | 0.179 ef | 31.11 b–d | 26.56 de | 12.296 e | |
S0N150 | 7.19 | 7.47 | 5.44 | 3.18 cd | 0.185 c–e | 26.27 e | 25.73 e | 12.751 d | |
Avg. | 7.16 | 7.52 | 5.34 | 3.09 B | 0.183 B | 28.74 B | 26.21 B | 12.594 B | |
Descriptive statistics | Mean | 7.17 | 7.52 | 4.98 | 3.17 | 0.187 | 31.43 | 28.10 | 13.529 |
Max. | 7.22 | 7.57 | 5.44 | 3.33 | 0.201 | 34.57 | 29.99 | 14.737 | |
Min. | 7.15 | 7.46 | 4.52 | 2.95 | 0.173 | 26.27 | 25.73 | 12.296 | |
SD | 0.02 | 0.03 | 0.35 | 0.13 | 0.008 | 2.54 | 1.51 | 0.936 | |
CV (%) | 0.30 | 0.46 | 7.04 | 4.09 | 4.154 | 8.07 | 5.38 | 6.918 | |
ANOVA (Sample size: n = 40) | F–value | 0.81 | 1.58 | 1.13 | 15.70 | 13.74 | 6.36 | 12.31 | 45.71 |
p | 0.609 | 0.172 | 0.378 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
R2 | 0.186 | 0.295 | 0.251 | 0.837 | 0.819 | 0.641 | 0.752 | 0.903 |
Variables | pH (H2O) | CaCO3 | Humus | TN | AP (P2O5) | AK (K2O) | SOC | GY |
---|---|---|---|---|---|---|---|---|
pH (KCl) | 0.45 | 0.08 | 0.10 | 0.15 | 0.02 | 0.16 | 0.18 | 0.15 |
pH (H2O) | −0.04 | 0.06 | 0.22 | 0.19 | 0.21 | 0.12 | 0.11 | |
CaCO3 | 0.05 | 0.05 | −0.06 | −0.51 | −0.10 | 0.16 | ||
Humus | 0.79 | 0.50 | 0.48 | 0.62 | 0.82 | |||
TN | 0.51 | 0.42 | 0.69 | 0.64 | ||||
AP (P2O5) | 0.44 | 0.55 | 0.43 | |||||
AK (K2O) | 0.55 | 0.33 | ||||||
SOC | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaćimović, G.; Aćin, V.; Mirosavljević, M.; Brbaklić, L.; Vujić, S.; Dunđerski, D.; Šeremešić, S. Effects of Combined Long-Term Straw Return and Nitrogen Fertilization on Wheat Productivity and Soil Properties in the Wheat-Maize-Soybean Rotation System in the Pannonian Plain. Agronomy 2023, 13, 1529. https://doi.org/10.3390/agronomy13061529
Jaćimović G, Aćin V, Mirosavljević M, Brbaklić L, Vujić S, Dunđerski D, Šeremešić S. Effects of Combined Long-Term Straw Return and Nitrogen Fertilization on Wheat Productivity and Soil Properties in the Wheat-Maize-Soybean Rotation System in the Pannonian Plain. Agronomy. 2023; 13(6):1529. https://doi.org/10.3390/agronomy13061529
Chicago/Turabian StyleJaćimović, Goran, Vladimir Aćin, Milan Mirosavljević, Ljiljana Brbaklić, Svetlana Vujić, Dušan Dunđerski, and Srđan Šeremešić. 2023. "Effects of Combined Long-Term Straw Return and Nitrogen Fertilization on Wheat Productivity and Soil Properties in the Wheat-Maize-Soybean Rotation System in the Pannonian Plain" Agronomy 13, no. 6: 1529. https://doi.org/10.3390/agronomy13061529