Preferences for Sustainable Residential Lawns in Florida: The Case of Irrigation and Fertilization Requirements
Abstract
:1. Introduction
2. Literature Review
2.1. Benefits Associated with Maintained Urban Landscapes
2.1.1. Environmental Benefits
2.1.2. Social and Human Health Benefits
2.1.3. Economic Benefits
2.2. Risks Associated with Maintained Urban Landscapes
2.2.1. Environmental Risks
2.2.2. Human Exposure Risks
2.2.3. Homeowner Lack of Knowledge
3. Materials and Methods
3.1. Survey Structure and Participant Recruitment
3.2. Experimental Design
- Price: “Cost per square foot of turfgrass established using either seed or sod (includes labor).”
- Irrigation requirement: “The number of times per week that turfgrass option needs to be irrigated.”
- Fertilization requirement: “The number of times per year that turfgrass option needs to be fertilized.”
3.3. Latent Class Logit Model
3.4. Willingness to Pay for Turfgrass Attributes
4. Results
4.1. Sample Descriptive Analysis
4.2. Estimation Results: Latent Class Logit Model
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Turfgrass Care Knowledge Quiz Questions
- True or False: The three basic nutrients included in lawn fertilizers are nitrogen, phosphorous, and potassium.
- ○
- True
- ○
- False
- True or False: Lawns should be fertilized during the dormant season to allow for nutrients to soak into the soil before active growth.
- ○
- True
- ○
- False
- True or False: The lawn should be irrigated with ¼” of water immediately after fertilization.
- ○
- True
- ○
- False
- True or False: Each irrigation session should run until the point of runoff to supply an adequate amount of water to the turfgrass.
- ○
- True
- ○
- False
- True or False: Lawns should be irrigated right before the hottest part of the day so the turfgrass is well hydrated before the heat.
- ○
- True
- ○
- False
- On average, how frequently does your lawn get irrigated during the growing season?
- ○
- Daily
- ○
- 3–4 times per week
- ○
- Twice per week
- ○
- Weekly
- ○
- Bi-weekly
- ○
- Monthly
- ○
- Bi-monthly
- ○
- I do not irrigate my lawn
- ○
- I do not know
References
- Carey, R.O.; Hochmuth, G.J.; Martinez, C.J.; Boyer, T.H.; Nair, V.D.; Dukes, M.D.; Toor, G.S.; Shober, A.L.; Cisar, J.L.; Trenholm, L.E.; et al. A Review of Turfgrass Fertilizer Management Practices: Implications for Urban Water Quality. HortTechnology 2012, 22, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Groffman, P.M.; Grove, J.M.; Polsky, C.; Bettez, N.D.; Morse, J.L.; Cavender-Bares, J.; Hall, S.J.; Heffernan, J.B.; Hobbie, S.E.; Larson, K.L.; et al. Satisfaction, Water and Fertilizer Use in the American Residential Macrosystem. Environ. Res. Lett. 2016, 11, 034004. [Google Scholar] [CrossRef]
- Florida-Friendly LandscapingTM Program—University of Florida, Institute of Food and Agricultural Sciences—UF/IFAS. Available online: https://ffl.ifas.ufl.edu (accessed on 20 April 2022).
- Romero, C.C.; Dukes, M.D. Net Irrigation Requirements for Florida Turfgrass Lawns: Part 3-Theoretical Irrigation Requirements: AE482, 8/2011. EDIS 2011, 2011. [Google Scholar] [CrossRef]
- Khachatryan, H.; Rihn, A.; Hansen, G.; Clem, T. Landscape Aesthetics and Maintenance Perceptions: Assessing the Relationship between Homeowners’ Visual Attention and Landscape Care Knowledge. Land Use Policy 2020, 95, 104645. [Google Scholar] [CrossRef]
- Blaine, T.W.; Clayton, S.; Robbins, P.; Grewal, P.S. Homeowner Attitudes and Practices towards Residential Landscape Management in Ohio, USA. Environ. Manag. 2012, 50, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, G.J.; Evans, R.G.; Jensen, M.E.; Martin, D.L.; Elliott, R.L. Design and Operation of Farm Irrigation Systems; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2007. [Google Scholar]
- Milesi, C.; Running, S.W.; Elvidge, C.D.; Dietz, J.B.; Tuttle, B.T.; Nemani, R.R. Mapping and Modeling the Biogeochemical Cycling of Turf Grasses in the United States. Environ. Manag. 2005, 36, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P. National Gardening Survey, 2018. 2018. Available online: https://garden.org/store/view/2/National-Gardening-Survey-2018-Edition/ (accessed on 20 April 2022).
- King, K.; Balogh, J.; Hughes, K.; Harmel, R. Nutrient Load Generated by Storm Event Runoff from a Golf Course Watershed. J. Environ. Qual. 2007, 36, 1021–1030. [Google Scholar] [CrossRef] [Green Version]
- Kjelgren, R.; Rupp, L.; Kilgren, D. Water Conservation in Urban Landscapes. HortScience 2000, 35, 1037–1040. [Google Scholar] [CrossRef] [Green Version]
- Priest, M.; Williams, D.; Bridgman, H. Emissions from In-Use Lawn-Mowers in Australia. Atmos. Environ. 2000, 34, 657–664. [Google Scholar] [CrossRef]
- Reid, S.B.; Pollard, E.K.; Sullivan, D.C.; Shaw, S.L. Improvements to Lawn and Garden Equipment Emissions Estimates for Baltimore, Maryland. J. Air Waste Manag. Assoc. 2010, 60, 1452–1462. [Google Scholar] [CrossRef]
- Zhang, X.; Khachatryan, H. Interactive Effects of Homeowners’ Environmental Concerns and Rebate Incentives on Preferences for Low-Input Residential Landscapes. Urban For. Urban Green. 2021, 65, 127322. [Google Scholar] [CrossRef]
- Hall, C.R.; Dickson, M.W. Economic, Environmental, and Health/Well-Being Benefits Associated with Green Industry Products and Services: A Review. J. Environ. Hortic. 2011, 29, 96–103. [Google Scholar] [CrossRef]
- Khachatryan, H.; Campbell, B.; Hall, C.; Behe, B.; Yue, C.; Dennis, J. The Effects of Individual Environmental Concerns on Willingness to Pay for Sustainable Plant Attributes. HortScience 2014, 49, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Engel, U.; Pötschke, M. Willingness to Pay for the Environment: Social Structure, Value Orientations and Environmental Behaviour in a Multilevel Perspective. Innov. Eur. J. Soc. Sci. Res. 1998, 11, 315–332. [Google Scholar] [CrossRef]
- Straughan, R.D.; Roberts, J.A. Environmental Segmentation Alternatives: A Look at Green Consumer Behavior in the New Millennium. J. Consum. Mark. 1999, 16, 558–575. [Google Scholar] [CrossRef]
- Tully, S.M.; Winer, R.S. The Role of the Beneficiary in Willingness to Pay for Socially Responsible Products: A Meta-Analysis. J. Retail. 2014, 90, 255–274. [Google Scholar] [CrossRef]
- Yue, C.; Hugie, K.; Watkins, E. Are Consumers Willing to Pay More for Low-Input Turfgrasses on Residential Lawns? Evidence from Choice Experiments. J. Agric. Appl. Econ. 2012, 44, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.; Wang, J.; Watkins, E.; Bonos, S.A.; Nelson, K.C.; Murphy, J.A.; Meyer, W.A.; Horgan, B.P. Heterogeneous Consumer Preferences for Turfgrass Attributes in the United States and Canada. Can. J. Agric. Econ. Can. Agroecon. 2017, 65, 347–383. [Google Scholar] [CrossRef]
- Ghimire, M.; Boyer, T.A.; Chung, C. Heterogeneity in Urban Consumer Preferences for Turfgrass Attributes. Urban For. Urban Green. 2019, 38, 183–192. [Google Scholar] [CrossRef]
- Zhang, X.; Khachatryan, H. Investigating Homeowners’ Preferences for Smart Irrigation Technology Features. Water 2019, 11, 1996. [Google Scholar] [CrossRef]
- Zhang, X.; Khachatryan, H. Effects of Perceived Economic Contributions on Individual Preferences for Environmentally Friendly Residential Landscapes. Land Use Policy 2021, 101, 105125. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; Xu, J. Impact of Urban Park’s Tree, Grass and Waterbody on Microclimate in Hot Summer Days: A Case Study of Olympic Park in Beijing, China. Urban For. Urban Green. 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Dousset, B.; Gourmelon, F. Satellite Multi-Sensor Data Analysis of Urban Surface Temperatures and Landcover. ISPRS J. Photogramm. Remote Sens. 2003, 58, 43–54. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Stefanov, W.L.; Martin, C.A. Ecosystem Services and Urban Heat Riskscape Moderation: Water, Green Spaces, and Social Inequality in Phoenix, USA. Ecol. Appl. 2011, 21, 2637–2651. [Google Scholar] [CrossRef] [PubMed]
- Steinke, K.; Chalmers, D.R.; Thomas, J.C.; White, R.H. Summer Drought Effects on Warm-Season Turfgrass Canopy Temperatures. Appl. Turfgrass Sci. 2009, 6, 1–11. [Google Scholar] [CrossRef]
- Bouwer, H. Artificial Recharge of Groundwater: Hydrogeology and Engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Puyang, X.; Han, L. Using Assessment of Net Ecosystem Services to Promote Sustainability of Golf Course in China. Ecol. Indic. 2016, 63, 165–171. [Google Scholar] [CrossRef]
- Montgomery, J.A.; Klimas, C.A.; Arcus, J.; DeKnock, C.; Rico, K.; Rodriguez, Y.; Vollrath, K.; Webb, E.; Williams, A. Soil Quality Assessment Is a Necessary First Step for Designing Urban Green Infrastructure. J. Environ. Qual. 2016, 45, 18–25. [Google Scholar] [CrossRef]
- Thwaites, D.I.; Tuohy, J.B. Back to the Future: The History and Development of the Clinical Linear Accelerator. Phys. Med. Biol. 2006, 51, R343. [Google Scholar] [CrossRef]
- Proske, A.; Lokatis, S.; Rolff, J. Impact of Mowing Frequency on Arthropod Abundance and Diversity in Urban Habitats: A Meta-Analysis. Urban For. Urban Green. 2022, 76, 127714. [Google Scholar] [CrossRef]
- Khachatryan, H.; Suh, D.H.; Xu, W.; Useche, P.; Dukes, M.D. Towards Sustainable Water Management: Preferences and Willingness to Pay for Smart Landscape Irrigation Technologies. Land Use Policy 2019, 85, 33–41. [Google Scholar] [CrossRef]
- Khachatryan, H.; Suh, D.H.; Zhou, G.; Dukes, M. Sustainable Urban Landscaping: Consumer Preferences and Willingness to Pay for Turfgrass Fertilizers. Can. J. Agric. Econ. Can. Agroecon. 2017, 65, 385–407. [Google Scholar] [CrossRef]
- Campbell, J.; Rihn, A.; Khachatryan, H. Factors Influencing Home Lawn Fertilizer Choice in the United States. HortTechnology 2020, 30, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.L.; Nelson, K.C.; Samples, S.; Hall, S.J.; Bettez, N.; Cavender-Bares, J.; Groffman, P.M.; Grove, M.; Heffernan, J.B.; Hobbie, S.E.; et al. Ecosystem Services in Managing Residential Landscapes: Priorities, Value Dimensions, and Cross-Regional Patterns. Urban Ecosyst. 2016, 19, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Barnes, M.R.; Watkins, E. Differences in Likelihood of Use between Artificial and Natural Turfgrass Lawns. J. Outdoor Recreat. Tour. 2022, 37, 100480. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Chandra, A.; Gaussoin, R.E.; Kowalewski, A.; Leinauer, B.; Rossi, F.S.; Soldat, D.J.; Stier, J.C.; Unruh, J.B. A Justification for Continued Management of Turfgrass during Economic Contraction. Agric. Environ. Lett. 2020, 5, e20033. [Google Scholar] [CrossRef]
- Frumkin, H. Beyond Toxicity: Human Health and the Natural Environment. Am. J. Prev. Med. 2001, 20, 234–240. [Google Scholar] [CrossRef]
- Heerwagen, J.H.; Orians, G.H. The Ecological World of Children. Child. Nat. Psychol. Sociocult. Evol. Investig. 2002, 29–64. [Google Scholar]
- Kahn, P.H., Jr.; Kellert, S.R. Children and Nature: Psychological, Sociocultural, and Evolutionary Investigations; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Barrett, M.A.; Miller, D.; Frumkin, H. Parks and Health: Aligning Incentives to Create Innovations in Chronic Disease Prevention. Prev. Chronic. Dis. 2014, 11, E63. [Google Scholar] [CrossRef] [Green Version]
- Young, D.R.; Coleman, K.J.; Ngor, E.; Reynolds, K.; Sidell, M.; Sallis, R.E. Associations between Physical Activity and Cardiometabolic Risk Factors Assessed in a Southern California Health Care System, 2010–2012; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2014.
- Bell, J.F.; Wilson, J.S.; Liu, G.C. Neighborhood Greenness and 2-Year Changes in Body Mass Index of Children and Youth. Am. J. Prev. Med. 2008, 35, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Manson, J.E.; Meigs, J.B.; Ridker, P.M.; Buring, J.E.; Liu, S. Comparison of Usefulness of Body Mass Index versus Metabolic Risk Factors in Predicting 10-Year Risk of Cardiovascular Events in Women. Am. J. Cardiol. 2007, 100, 1654–1658. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, A. How Is Quality of Urban Green Spaces Associated with Physical Activity and Health? Urban For. Urban Green. 2016, 16, 76–83. [Google Scholar] [CrossRef]
- Beyer, K.M.; Kaltenbach, A.; Szabo, A.; Bogar, S.; Nieto, F.J.; Malecki, K.M. Exposure to Neighborhood Green Space and Mental Health: Evidence from the Survey of the Health of Wisconsin. Int. J. Environ. Res. Public. Health 2014, 11, 3453–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, R. The Nature of the View from Home: Psychological Benefits. Environ. Behav. 2001, 33, 507–542. [Google Scholar] [CrossRef]
- Cook, D.I.; Van Haverbeke, D.F. Trees and Shrubs for Noise Abatement; USDA Forest Service: Washington, DC, USA, 1971.
- Van Renterghem, T.; Forssén, J.; Attenborough, K.; Jean, P.; Defrance, J.; Hornikx, M.; Kang, J. Using Natural Means to Reduce Surface Transport Noise during Propagation Outdoors. Appl. Acoust. 2015, 92, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Hartig, T.; Mitchell, R.; De Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [Green Version]
- Kuo, F.E.; Sullivan, W.C. Environment and Crime in the Inner City: Does Vegetation Reduce Crime? Environ. Behav. 2001, 33, 343–367. [Google Scholar] [CrossRef] [Green Version]
- Kuo, F.E.; Bacaicoa, M.; Sullivan, W.C. Transforming Inner-City Landscapes: Trees, Sense of Safety, and Preference. Environ. Behav. 1998, 30, 28–59. [Google Scholar] [CrossRef]
- Bedimo-Rung, A.L.; Mowen, A.J.; Cohen, D.A. The Significance of Parks to Physical Activity and Public Health: A Conceptual Model. Am. J. Prev. Med. 2005, 28, 159–168. [Google Scholar] [CrossRef]
- Laverne, R.J.; Winson-Geideman, K. The Influence of Trees and Landscaping on Rental Rates at Office Buildings. J. Arboric. 2003, 29, 281–290. [Google Scholar] [CrossRef]
- Elam, E.; Stigarll, A. Landscape and House Appearance Impacts on the Price of Single-Family Houses. J. Environ. Hortic. 2012, 30, 182–188. [Google Scholar] [CrossRef]
- Conway, D.; Li, C.Q.; Wolch, J.; Kahle, C.; Jerrett, M. A Spatial Autocorrelation Approach for Examining the Effects of Urban Greenspace on Residential Property Values. J. Real Estate Financ. Econ. 2010, 41, 150–169. [Google Scholar] [CrossRef]
- Parker, J.H. Landscaping to Reduce the Energy Used in Cooling Buildings. J. For. 1983, 81, 82–105. [Google Scholar]
- McPherson, B.D.; Curtis, J.E.; Loy, J.W. The Social Significance of Sport: An Introduction to the Sociology of Sport; Human Kinetics Publishers: Champaign, IL, USA, 1989. [Google Scholar]
- Carrico, A.R.; Fraser, J.; Bazuin, J.T. Green with Envy: Psychological and Social Predictors of Lawn Fertilizer Application. Environ. Behav. 2013, 45, 427–454. [Google Scholar] [CrossRef]
- Cook, E.M.; Hall, S.J.; Larson, K.L. Residential Landscapes as Social-Ecological Systems: A Synthesis of Multi-Scalar Interactions between People and Their Home Environment. Urban Ecosyst. 2012, 15, 19–52. [Google Scholar] [CrossRef]
- Martini, N.F.; Nelson, K.C.; Hobbie, S.E.; Baker, L.A. Why “Feed the Lawn”? Exploring the Influences on Residential Turf Grass Fertilization in the Minneapolis- Saint Paul Metropolitan Area. Environ. Behav. 2015, 47, 158–183. [Google Scholar] [CrossRef]
- Robbins, P.; Birkenholtz, T. Turfgrass Revolution: Measuring the Expansion of the American Lawn. Land Use Policy 2003, 20, 181–194. [Google Scholar] [CrossRef]
- Robbins, P.; Sharp, J.T. Producing and Consuming Chemicals: The Moral Economy of the American Lawn. Econ. Geogr. 2003, 79, 425–451. [Google Scholar] [CrossRef]
- Badruzzaman, M.; Pinzon, J.; Oppenheimer, J.; Jacangelo, J.G. Sources of Nutrients Impacting Surface Waters in Florida: A Review. J. Environ. Manag. 2012, 109, 80–92. [Google Scholar] [CrossRef]
- Miller, K.L. State Law Banning Phosphorus Fertilizer Use. Available online: http://www.cga.ct.gov/2012/rpt/2012-R-0076.htm (accessed on 27 September 2013).
- Boyer, T.A.; Kanza, P.; Ghimire, M.; Moss, J.Q. Household Adoption of Water Conservation and Resilience under Drought: The Case of Oklahoma City. Water Econ. Policy 2015, 1, 1550005. [Google Scholar] [CrossRef]
- Kenny, J.F.; Barber, N.L.; Hutson, S.S.; Linsey, K.S.; Lovelace, J.K.; Maupin, M.A. Estimated Use of Water in the United States in 2005; US Geological Survey; United States Department of the Interior: Washington, DC, USA, 2009.
- Beard, J.B.; Kenna, M.P. Water Quality and Quantity Issues for Turfgrasses in Urban Landscapes. In Proceedings of the Workshop on Water Quality and Quantity Issues for Turfgrasses in Urban Landscapes, Las Vegas, NV, USA, 23–25 January 2006; Council for Agricultural Science and Technology: Ames, IA, USA, 2008. [Google Scholar]
- Hayden, L.; Cadenasso, M.L.; Haver, D.; Oki, L.R. Residential Landscape Aesthetics and Water Conservation Best Management Practices: Homeowner Perceptions and Preferences. Landsc. Urban Plan. 2015, 144, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, B.; Graymore, M.; O’Toole, K. Household Water Use Behavior: An Integrated Model. J. Environ. Manag. 2009, 91, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Gregory, G.D.; Leo, M.D. Repeated Behavior and Environmental Psychology: The Role of Personal Involvement and Habit Formation in Explaining Water Consumption 1. J. Appl. Soc. Psychol. 2003, 33, 1261–1296. [Google Scholar] [CrossRef]
- Seyranian, V.; Sinatra, G.M.; Polikoff, M.S. Comparing Communication Strategies for Reducing Residential Water Consumption. J. Environ. Psychol. 2015, 41, 81–90. [Google Scholar] [CrossRef]
- National Pesticide Information Center. 2,4-D: Ingredients Used in Pesticide Products: 2,4-D. United States Environmental Protection Agency. 2021. Available online: http://npic.orst.edu/ingred/24d.html (accessed on 11 October 2022).
- Murphy, R.R.; Haith, D.A. Inhalation Health Risk to Golfers from Turfgrass Pesticides at Three Northeastern US Sites. Environ. Sci. Technol. 2007, 41, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.A.; Solomon, K.R. Human Exposure to 2, 4-D Following Controlled Activities on Recently Sprayed Turf. J. Environ. Sci. Health Part B 1992, 27, 9–22. [Google Scholar] [CrossRef]
- Robbins, P.; Polderman, A.; Birkenholtz, T. Lawns and Toxins: An Ecology of the City. Cities 2001, 18, 369–380. [Google Scholar] [CrossRef]
- Kamrin, M. Traces of Environmental Chemicals in the Human Body; American Council on Science and Health: New York, NY, USA, 2003. [Google Scholar]
- Letton, R.W.; Chwals, W.J. Patterns of Power Mower Injuries in Children Compared with Adults and the Elderly. J. Trauma 1994, 37, 182–186. [Google Scholar] [CrossRef]
- Suh, D.H.; Khachatryan, H.; Rihn, A.; Dukes, M. Relating Knowledge and Perceptions of Sustainable Water Management to Preferences for Smart Irrigation Technology. Sustainability 2017, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Khachatryan, H.; Rihn, A. Consumer Preferences for Labels Disclosing the Use of Neonicotinoid Pesticides: Evidence from Experimental Auctions. J. Agric. Resour. Econ. 2020, 45, 496–517. [Google Scholar]
- De Val, G.D.L.F.; Atauri, J.A.; de Lucio, J.V. Relationship between Landscape Visual Attributes and Spatial Pattern Indices: A Test Study in Mediterranean-Climate Landscapes. Landsc. Urban Plan. 2006, 77, 393–407. [Google Scholar] [CrossRef]
- Kendal, D.; Williams, K.J.; Williams, N.S. Plant Traits Link People’s Plant Preferences to the Composition of Their Gardens. Landsc. Urban Plan. 2012, 105, 34–42. [Google Scholar] [CrossRef]
- Ouma, E.; Abdulai, A.; Drucker, A. Measuring Heterogeneous Preferences for Cattle Traits among Cattle-Keeping Households in East Africa. Am. J. Agric. Econ. 2007, 89, 1005–1019. [Google Scholar] [CrossRef]
- Boxall, P.C.; Adamowicz, W.L. Understanding Heterogeneous Preferences in Random Utility Models: A Latent Class Approach. Environ. Resour. Econ. 2002, 23, 421–446. [Google Scholar] [CrossRef]
- Rihn, A.; Khachatryan, H.; Campbell, B.; Hall, C.; Behe, B. Consumer Preferences for Organic Production Methods and Origin Promotions on Ornamental Plants: Evidence from Eye-Tracking Experiments. Agric. Econ. 2016, 47, 599–608. [Google Scholar] [CrossRef]
- Suh, D.H.; Khachatryan, H.; Guan, Z. Why Do We Adopt Environmentally Friendly Lawn Care? Evidence from Do-It-Yourself Consumers. Appl. Econ. 2016, 48, 2550–2561. [Google Scholar] [CrossRef]
- Dennis, J.H.; Lopez, R.G.; Behe, B.K.; Hall, C.R.; Yue, C.; Campbell, B.L. Sustainable Production Practices Adopted by Greenhouse and Nursery Plant Growers. HortScience 2010, 45, 1232–1237. [Google Scholar] [CrossRef] [Green Version]
- Gilg, A.; Barr, S. Behavioural Attitudes towards Water Saving? Evidence from a Study of Environmental Actions. Ecol. Econ. 2006, 57, 400–414. [Google Scholar] [CrossRef]
- Hilaire, R.S.; VanLeeuwen, D.M.; Torres, P. Landscape Preferences and Water Conservation Choices of Residents in a High Desert Environment. HortTechnology 2010, 20, 308–314. [Google Scholar] [CrossRef]
Turfgrass Attribute | Attribute Levels |
---|---|
Irrigation Requirement | Low (once per week) |
High (twice or more per week) | |
Fertilizer Requirement | Low (once per year) |
High (3 times or more per year) | |
Price (per ft2) | USD 1.00 |
USD 1.50 | |
USD 2.00 |
Demographic Characteristics | Sample |
---|---|
Female | 59.94% |
Age (mean, SD) | 48.99 (15.19) |
Income (categorical) | |
Less than USD 19,999 | 9.13% |
USD 20–USD 39,999 | 19.89% |
USD 40–USD 59,999 | 19.12% |
USD 60–USD 79,999 | 17.03% |
USD 80–USD 99,999 | 10.85% |
USD 100–USD 119,999 | 6.85% |
USD 120–USD 139,999 | 4.85% |
USD 140–USD 159,999 | 5.61% |
More than USD 160,000 | 6.66% |
Ethnicity | |
White | 75.93% |
African American | 9.51% |
Hispanic | 10.09% |
Asian | 2.47% |
Native American | 0.76% |
Pacific Islander | 0.10% |
Education | |
High school | 17.51% |
Some college | 22.74% |
Associates degree | 13.32% |
Bachelor’s degree | 26.83% |
Master’s degree or higher | 14.37% |
HH Size (mean, SD) | 2.26 (0.98) |
Urbaneness | |
Urban | 22.26% |
Suburban | 63.37% |
Rural | 14.37% |
Homeowner Segments | ||||
---|---|---|---|---|
Variable | High Input | Irrigation Conscious | Fertilizer Conscious | Moderate Input |
Price | −1.2042 ** | −0.9583 ** | −0.7987 ** | −0.9966 ** |
(0.1611) | (0.1748) | (0.1815) | (0.0818) | |
Irrigation Low | 1.1646 ** | 3.1693 ** | 0.9172 ** | −0.2087 ** |
(0.1672) | (0.2616) | (0.1761) | (0.0865) | |
Fertilizer Low | 1.5182 ** | 1.2217 ** | 2.9773 ** | −0.1839 ** |
(0.1579) | (0.1807) | (0.2142) | (0.0789) | |
Opt Out | 1.0406 ** | −0.8213 ** | −0.9674 ** | −3.5673 ** |
(0.2594) | (0.3010) | (0.3110) | (0.1605) | |
Class Share | 33.3% | 27.0% | 22.9% | 16.7% |
Class membership model estimates: High Input as reference class | ||||
Knowledge | 0.2334 | 0.0137 | −0.2732 ** | |
Education level | 0.1843 | 0.0850 | 0.1754 ** | |
Constant | −1.5881 | −0.4533 | 0.8433 ** | |
AIC | 14,405.878 | |||
BIC | 14,380.878 | |||
Log-likelihood | −7103.470 |
Demographics of Latent Classes | ||||||||
---|---|---|---|---|---|---|---|---|
High-Input Users | Irrigation-Conscious Users | Fertilizer-Conscious Users | Moderate-Input Users | |||||
Age | 47.3143 | AB | 47.3764 | A | 47.9696 | B | 53.7119 | C |
(0.2983) | (0.1638) | (0.1606) | (0.1990) | |||||
Female (%) | 54.29 | A | 61.21 | C | 55.25 | A | 67.80 | B |
(0.97) | (0.53) | (0.52) | (0.65) | |||||
White (%) | 72.81 | C | 75.57 | A | 75.14 | A | 79.24 | B |
(0.85) | (0.47) | (0.46) | (0.57) | |||||
Other Races (%) | 27.62 | B | 24.43 | A | 24.86 | A | 20.76 | C |
(0.85) | (0.46) | (0.45) | (0.57) | |||||
Adults in HH | 2.18 | A | 2.28 | B | 2.30 | B | 2.20 | A |
(0.02) | (0.01) | (0.01) | (0.01) | |||||
Children in HH | 1.6762 | A | 1.7443 | B | 1.6851 | A | 1.39 | C |
(0.02) | (0.01) | (0.01) | (0.01) | |||||
Bachelor’s Degree (%) | 28.57 | A | 28.45 | A | 29.56 | A | 19.49 | B |
(0.88) | (0.48) | (0.47) | (0.59) | |||||
Full-Time Employed (%) | 57.14 | A | 46.55 | B | 43.92 | C | 23.73 | D |
(0.96) | (0.53) | (0.52) | (0.64) | |||||
Income | 4.68 | B | 4.32 | A | 4.38 | A | 3.50 | C |
(0.05) | (0.03) | (0.03) | (0.03) | |||||
Single-Family Dwelling (%) | 78.10 | A | 61.78 | C | 72.93 | B | 44.07 | D |
(0.93) | (0.51) | (0.50) | (0.62) | |||||
Suburban Area (%) | 53.33 | C | 66.67 | B | 62.98 | A | 63.56 | A |
(1.00) | (0.53) | (0.52) | (0.64) |
Homeowner Segments | ||||||||
---|---|---|---|---|---|---|---|---|
Practices | High-Input Users | Irrigation-Conscious Users | Fertilizer-Conscious Users | Moderate-Input Users | ||||
Mowing (%) | 80.00 | AB | 79.31 | A | 79.28 | A | 80.93 | B |
(0.8) | (0.44) | (0.43) | (0.53) | |||||
Fertilization (%) | 59.05 | A | 54.89 | B | 50.55 | C | 31.78 | D |
(0.98) | (0.54) | (0.53) | (0.65) | |||||
Weed Control (%) | 59.05 | A | 57.76 | A | 55.25 | B | 40.25 | C |
(0.98) | (0.54) | (0.53) | (0.65) | |||||
Disease/Insect Control (%) | 36.19 | A | 42.53 | B | 37.29 | A | 27.97 | C |
(0.95) | (0.52) | (0.51) | (0.64) | |||||
Irrigation (%) | 51.43 | A | 42.24 | C | 45.86 | B | 23.73 | D |
(0.96) | (0.52) | (0.52) | (0.64) | |||||
Soil Testing (%) | 12.38 | A | 5.17 | C | 7.73 | B | 3.81 | D |
(0.49) | (0.27) | (0.26) | (0.33) | |||||
Turf Renovation (%) | 18.1 | B | 8.33 | A | 8.01 | A | 2.12 | C |
(0.53) | (0.29) | (0.28) | (0.35) | |||||
Lawn Clippings/Leaf Removal (%) | 34.29 | A | 41.67 | B | 43.09 | B | 36.02 | A |
(0.97) | (0.54) | (0.52) | (0.65) | |||||
Sod Installation (%) | 13.33 | A | 12.07 | A | 9.12 | B | 7.20 | C |
(0.60) | (0.33) | (0.32) | (0.4) | |||||
% of Turf Irrigated | 62.269 | A | 49.210 | C | 58.514 | B | 31.233 | D |
(0.75) | (0.41) | (0.41) | (0.50) | |||||
USD Spent on Lawn Maintenance | 1.00 | AB | 1.56 | C | 1.125 | B | 1.00 | A |
(0.15) | (0.03) | (0.04) | (0.03) | |||||
Total Area of Lawn Maintained (ft2) | 2854.77 | A | 9930.36 | B | 3174.81 | A | 3138.78 | A |
(887.10) | (491.50) | (469.12) | (617.98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knuth, M.; Wei, X.; Zhang, X.; Khachatryan, H.; Hodges, A.; Yue, C. Preferences for Sustainable Residential Lawns in Florida: The Case of Irrigation and Fertilization Requirements. Agronomy 2023, 13, 416. https://doi.org/10.3390/agronomy13020416
Knuth M, Wei X, Zhang X, Khachatryan H, Hodges A, Yue C. Preferences for Sustainable Residential Lawns in Florida: The Case of Irrigation and Fertilization Requirements. Agronomy. 2023; 13(2):416. https://doi.org/10.3390/agronomy13020416
Chicago/Turabian StyleKnuth, Melinda, Xuan Wei, Xumin Zhang, Hayk Khachatryan, Alan Hodges, and Chengyan Yue. 2023. "Preferences for Sustainable Residential Lawns in Florida: The Case of Irrigation and Fertilization Requirements" Agronomy 13, no. 2: 416. https://doi.org/10.3390/agronomy13020416
APA StyleKnuth, M., Wei, X., Zhang, X., Khachatryan, H., Hodges, A., & Yue, C. (2023). Preferences for Sustainable Residential Lawns in Florida: The Case of Irrigation and Fertilization Requirements. Agronomy, 13(2), 416. https://doi.org/10.3390/agronomy13020416