Pearl Millet–Groundnut Cropping Systems for the Sahel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
- -
- Five (5) cropping systems (Table 1) comprising S1: pearl millet sole crop (MSC); S2: groundnut sole crop (GSC); S3: pearl millet/groundnut intercropped with one row of groundnut between two rows of pearl millet (M-G: 1:1:1); S4: pearl millet/groundnut intercropped with two rows of groundnut between two rows of pearl millet (M-G: 1:2:1); S5: pearl millet/groundnut intercropped with three rows of groundnut between two rows of pearl millet (M-G: 1:3:1); and
- -
- Two fertilizer levels: F0—no fertilizer application and F1—100 kg/ha NPK (15-15-15) pre-plant applied and incorporated to the experimental area prior to planting, and 50 kg/ha urea side-dress applied to pearl millet at the 8-leaves stage.
Cropping System | Millet–Groundnut-Millet Distribution | Pearl Millet | Groundnut | ||||||
---|---|---|---|---|---|---|---|---|---|
Spacing | Plant Population | Spacing | Plant Population | ||||||
Row | Intra-Row | Row | Intra-Row | ||||||
Row | ----m -- | No./ha | % | ----- m ---- | No./ha | % | |||
Pearl Millet Sole (S1) | 1.0 | 1.0 | 30,000 | 100 | - | ||||
Groundnut Sole (S2) | - | - | - | - | 0.5 | 0.2 | 200,000 | 100 | |
Pearl Millet—Groundnut Intercrop (S3) | 1:1:1 | 1.0 | 1.0 | 30,000 | 100 | 0.5 | 0.2 | 75,000 | 37.5 |
Pearl Millet—Groundnut Intercrop (S4) | 1:2:1 | 1.5 | 1.0 | 21,818 | 72.7 | 0.5 | 0.2 | 109,091 | 54.5 |
Pearl Millet—Groundnut Intercrop (S5) | 1:3:1 | 2.0 | 1.0 | 16,000 | 53.3 | 0.5 | 0.2 | 120,000 | 60.0 |
2.3. Crop Management and Data Collection
2.4. Data Collection and Statistical Analysis
3. Results
3.1. Agronomic Results
3.1.1. Grain and Pod Yields
3.1.2. Land Equivalent Ratio/Land Use Efficiency
3.2. Economic Analysis
4. Discussion
4.1. Cropping System
4.2. Fertilizer Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- R N-M-A Direction des Statistiques République du Niger MinistReère de l’Agriculture-Direction des Statistiques. 2022. Rapport d’évaluation de la campagne agricole d’hivernage 2021 et perspectives 2022. Bibliothèque numérique DUDDAL. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjFp5D47oODAxUo0QIHHWb_Ay4QFnoECBUQAQ&url=https%3A%2F%2Freca-niger.org%2FIMG%2Fpdf%2Frapport_definitif_des_resultats_de_l_eper_2021.pdf&usg=AOvVaw0399h_8QAcmqE2d6_eKrQV&opi=89978449 (accessed on 3 December 2023).
- Lithourgidis, A.; Dordas, C.; Damalas, C.; Vlachostergios, D. Annual intercrops: An alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 2011, 5, 396. [Google Scholar]
- Yamoah, C.; Bationo, A.; Shapiro, B.; Koala, S. Soil management practices to improve nutrient-use efficiencies and reduce risk in millet-based cropping systems in the Sahel. Tropicultura 2003, 21, 66–72. [Google Scholar]
- Willey, R.W. Intercropping its importance and research needs. Part1. Competition and yield advantages. Field Crops Abstr. 1979, 32, 1–10. [Google Scholar]
- Mason, S.C.; Maman, N.; Palé, S. Pearl Millet Production Practices in Semi-Arid West Africa: A Review. Expl. Agric. 2015, 51, 501–521. [Google Scholar] [CrossRef]
- Hussainy, S.A.H.; Brindavathy, R.; Vaidyanathan, R. Production potential of groundnut (Arachis hypogaea L.) under intercropping system—A review. Crop Res. 2020, 55, 36–47. [Google Scholar]
- Tefera, T.; Tana, T. Agronomic performance of sorghum and groundnut cultivars in sole and intercrop cultivation under semiarid conditions. J. Agron. Crop Sci. 2002, 188, 212–218. [Google Scholar] [CrossRef]
- Natarajan, N.; Willey, R.W. The effect of water stress on yield advantages of intercropping systems. Field Crops Res. 1986, 13, 117–131. [Google Scholar] [CrossRef]
- Willey, R.W.; Natarajan, M.; Reddy, M.S.; Rao, M.R. Cropping systems with groundnut: Resource use and productivity. In Proceedings of the Agrometerology of Groundnut: Proceedings of an International Symposium, ICRISAT Sahelien Centre, Niamey, Niger, 21–26 August 1985; pp. 193–205. [Google Scholar]
- Reddy, M.R.; Willey, R.W. Growth and resource use studies in an intercrop of pearl millet/groundnut. Field Crops Res. 1981, 4, 13–24. [Google Scholar] [CrossRef]
- Reddy, M.S. No Date. Groundnut in Intercropping Systems. Internal Publication, ICRISAT Sahelien Centre, Niamey, Niger. Available online: https://oar.icrisat.org/3610/1/PIWG_133-142.pdf (accessed on 8 December 2013).
- Harris, D.; Natarajan, M. Physiological basis for yield advantage in a sorghum/groundnut intercrop exposed to drought. 2. Plant temperature, water stress, and components of yield. Field Crops Res. 1987, 17, 273–288. [Google Scholar] [CrossRef]
- Pale, S.; Serme, I.; Taonda, S.J.-B.; Ouattara, K. Pearl Millet and Cowpea Yields as Influenced by Tillage, Soil Amendment and Cropping System in the Sahel of Burkina Faso. 2019, Mason, S.C., Sohoro, A. International Journal of Sciences. 8. Available online: www.ijsciences.com/pub/issue (accessed on 3 December 2023).
- Pale, S.; Serme, I.; Taonda, S.J.-B.; Ouattara, K.; Mason, S.C.; Sohoro, A. Sorghum and groundnut yields as influenced by tillage, cropping system and soil amendment in the Sudanian agroecological zone of Burkina Faso. J. Agric. Sci. Food Technol. 2019, 5, 109–116. [Google Scholar]
- Maman, N.; Dicko, M.; Gonda, A.; Touré, A.W.; Wortmann, C.S. Sorghum and groundnut sole and intercrop nutrient response in semi-arid West Africa. Agron. J. 2017, 109, 2907–2917. [Google Scholar] [CrossRef]
- Ghosh, P.K. Growth, yield, competition and economics of groundnut cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Res. 2004, 88, 227–237. [Google Scholar] [CrossRef]
- Suleman, N.N.; El Naim, A.M.; Obahim, K.A. Assessment of grountnut and sorghum intercropping. Innov. Sci. Technol. 2022, 1, 1–7. [Google Scholar] [CrossRef]
- Langat, M.C.; Okiror, M.A.; Ouma, J.P.; Gesimba, R.M. The effect of intercropping groundnut (Arachis hypogea L.) with sorghum (Sorghum bicolor L. Moench) on yield and cash income. Agric. Trop. Et Subtrop. 2006, 39, 87–90. [Google Scholar]
- Kumar, D.S.; Reddy, D.S.; Reddy, T.Y. Productivity of groundnut (Arachis hypgaea) based intercropping systems under rainfed conditions. Curr. Biot. 2010, 3, 490–499. [Google Scholar]
- Azam-Ali, S.N. Production Systems in Agronomy: Multiple cropping. Encycl. Appl. Plant Sci. 2003, 978–984. [Google Scholar]
- Jones, A.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Dewitte, O.; Gallali, T.; Hallett, S.; Jones, R.; Kilasara, M.; et al. Soil Atlas of Africa; European Communication Publication Office of the European Union: Luxembourg, 2013. [Google Scholar] [CrossRef]
- MDA-Niger, Ministère du Développement Agricole (MDA-Niger). Catalogue National des Espèces et Variétés Végétales (CNEV). 2012. Bibliothèque numérique DUDDAL. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiauafIy4SDAxUSlFYBHajuCHcQFnoECA0QAQ&url=https%3A%2F%2Fwww.csan-niger.com%2Fwp-content%2Fuploads%2F2018%2F08%2Fcatalogue-national-des-esp%25C3%25A8ces-et-vari%25C3%25A9tes-vegetales-2012.pdf&usg=AOvVaw2dYAhMYD1yTNQmc20etLAc&opi=89978449. (accessed on 3 December 2023).
- CIMMYT. From Agronomic Data to Farmer Recommendations: An Economics 318 Workbook; CIMMYT: Mexico City, Mexico, 1988. [Google Scholar]
- Kihara, J.; Huising, J.; Nziguheba, G.; Waswa, B.; Njoroge, S.; Kabambe, V.; Iwuafor, E.; Kibunja, C.; Esilaba, A.; Coulibaly, A. Maize response to macronutrients and potential for profitability in sub-Saharan Africa. Nutr. Cycl. Agroecosyst. 2015, 105, 359. [Google Scholar] [CrossRef]
- Ndunguru, B.J.; Williams, J.H. The impact pf varying levels of competition from pearl millet on yields of groundnut cultivars. Exp. Agric. 1993, 29, 29–37. [Google Scholar] [CrossRef]
- Payne, W.A. Managing yield and water use of pearl millet in Sahel. Agron. J. 1997, 89, 481–490. [Google Scholar] [CrossRef]
- Bationo, A.; Christianson, C.B.; Baethgen, W.E. Plant density and nitrogen fertilizer effects on pearl millet production in Niger. Agron. J. 1990, 82, 290–295. [Google Scholar] [CrossRef]
- Tarfa, B.D.; Maman, N.; Ouattara, K.; Wortmann, C. Groundnut and soybean response to nutrient application in West. Agron. J. 2017, 109, 2323–2332. [Google Scholar] [CrossRef]
2018–2022-Average | 2021 | 2022 | |
---|---|---|---|
June | 74 | 54 | 80 |
July | 147 | 150 | 122 |
August | 222 | 226 | 293 |
September | 145 | 71 | 209 |
October | 11 | 0 | 1 |
Total | 598 | 500 | 704 |
Cropping System | Row Distribution | Pearl Millet Grain | Groundnut Pods | ||||
---|---|---|---|---|---|---|---|
Without Fertilizer | With Fertilizer | Mean (Across Fertilizer Rates) | Without Fertilizer | With Fertilizer | Mean (Across Fertilizer Rates) | ||
---------------------------------------------- kg/ha -------------------------------------- | |||||||
Pearl millet sole crop | 828 Ba † | 1338 Aa | 1083 a | -- | -- | -- | |
Groundnut sole crop | -- | -- | -- | 846 Ba | 1408 Aa | 1127 a | |
Pearl millet—groundnut intercrop | 1:1:1 | 602 Bb | 928 Abc | 765 b | 498 Bc | 699 Acd | 598 c |
Pearl millet—groundnut intercrop | 1:2:1 | 514 Bc | 832 Abc | 673 bc | 560 Bbc | 824 Abc | 692 bc |
Pearl millet—groundnut intercrop | 1:3:1 | 498 Bc | 658 Acd | 578 c | 683 Bb | 1013 Ab | 848 b |
Mean (across cropping systems) | 611 B | 939 A | 647 B | 983 A |
Cropping System | Row Distribution | Cropping System without Fertilizer | Cropping System with Fertilizer | Fertilizer Application for Each Cropping System | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pearl Millet | Groundnut | Total | Pearl Millet | Groundnut | Total | Pearl Millet | Groundnut | Total | ||
Pearl millet sole crop | 1.0 | -- | 1.0 | 1.00 | -- | 1.00 | 1.62 | -- | 1.62 | |
Groundnut sole crop | -- | 1.0 | 1.0 | -- | 1.00 | 1.00 | -- | 1.66 | 1.66 | |
Pearl millet—groundnut intercrop | 1:1:1 | 0.73 | 0.59 | 1.32 | 0.69 | 0.50 | 1.19 | 1.54 | 1.40 | 2.99 |
Pearl millet—groundnut intercrops | 1:2:1 | 0.62 | 0.66 | 1.28 | 0.62 | 0.59 | 1.21 | 1.62 | 1.47 | 3.09 |
Pearl millet—groundnut intercrop | 1:3:1 | 0.60 | 0.81 | 1.41 | 0.49 | 0.72 | 1.21 | 1.32 | 1.48 | 2.80 |
Cropping System | 2021 Without Fertilizer Subsidy | 2021 With Fertilizer Subsidy | ||||
---|---|---|---|---|---|---|
Fert. CFA | VYi CFA | VCR | Fert. CFA | Vyi CFA | VCR | |
S1: MSC | 50,000 | 131,755 | 2.62 | 43,500 | 131,755 | 3.03 |
S2: GSC | 35,000 | 144,716 | 4.13 | 30,000 | 144,716 | 4.82 |
S3: MGIC: 1:1:1 | 50,000 | 160,699 | 3.22 | 43,500 | 160,699 | 3.69 |
S4: MGIC: 1:2:1 | 44,900 | 159,119 | 3.55 | 38,910 | 159,119 | 4.09 |
S5: MGIC: 1:3:1 | 42,500 | 151,698 | 3.57 | 36,750 | 151,698 | 4.13 |
2022 without fertilizer subsidy | 2022 with fertilizer subsidy | |||||
Fert. CFA | Vyi CFA | VCR | Fert. CFA | Vyi CFA | VCR | |
S1: MSC | 74,000 | 102,139 | 1.38 | 43,500 | 102,139 | 2.35 |
S2: GSC | 50,000 | 182,500 | 3.65 | 30,000 | 182,500 | 6.08 |
S3:MGIC: 1:1:1 | 74,000 | 106,247 | 1.44 | 43,500 | 106,247 | 2.44 |
S4: MGIC: 1:2:1 | 65,840 | 145,849 | 2.22 | 38,910 | 145,849 | 3.75 |
S5: MGIC: 1:3:1 | 62,000 | 112,556 | 1.82 | 36,750 | 112,556 | 3.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maman, N.; Mason, S.C. Pearl Millet–Groundnut Cropping Systems for the Sahel. Agronomy 2023, 13, 3029. https://doi.org/10.3390/agronomy13123029
Maman N, Mason SC. Pearl Millet–Groundnut Cropping Systems for the Sahel. Agronomy. 2023; 13(12):3029. https://doi.org/10.3390/agronomy13123029
Chicago/Turabian StyleMaman, Nouri, and Stephen C. Mason. 2023. "Pearl Millet–Groundnut Cropping Systems for the Sahel" Agronomy 13, no. 12: 3029. https://doi.org/10.3390/agronomy13123029