Diversification and Soil Management Effects on the Quality of Organic Apricots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Plant Materials and Pedoclimatic Data
2.1.1. Experimental Design and Plant Materials
2.1.2. Climatic Conditions
2.1.3. Soil Characterizations
2.2. Fruit Quality Traits
2.3. Chemicals
2.4. Extraction and Total Phenolic Content and Antioxidant Activity Determinations
2.5. Statistical Analysis
3. Results
3.1. Fruit Apricot General Aspects
3.2. Cultivars Variability
3.3. Management Systems Variability
3.4. Year Variability
3.5. Generalized Linear Models
3.6. Clustering Tendencies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization Statistical Databases. 2019. Available online: http://faostat.fao.org (accessed on 25 June 2021).
- Leccese, A.; Bartolini, S.; Viti, R. Total antioxidant capacity and phenolics content in apricot fruits. Int. J. Fruit Sci. 2007, 7, 3–16. [Google Scholar] [CrossRef]
- Leccese, A.; Bureau, S.; Reich, M.; Renard, M.C.; Audergon, J.M.; Mennone, C.; Bartolini, S.; Viti, R. Pomological and nutraceutical properties in apricot fruit: Cultivation systems and cold storage fruit management. Plant Food. Hum. Nutr. 2010, 65, 112–120. [Google Scholar] [CrossRef]
- Leccese, A.; Bartolini, S.; Viti, R. From genotype to apricot fruit quality: The antioxidant properties contribution. Plant Food. Hum. Nutr. 2012, 67, 317–325. [Google Scholar] [CrossRef]
- Hegedüs, A.; Engel, R.; Abrankó, L.; Balogh, E.; Blázovics, A.; Hermán, R.; Halász, J.; Ercisli, S.; Pedryc, A.; Stefanovits-Bányai, É. Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.) fruits: Variations from genotypes, years, and analytical methods. J. Food Sci. 2010, 75, C722–C730. [Google Scholar] [CrossRef]
- Hegedüs, A.; Pfeiffer, P.; Papp, N.; Abrankó, L.; Blázovics, A.; Pedryc, A.; Stefanovits-Bányai, E. Accumulation of antioxidants in apricot fruit through ripening: Characterization of a genotype with enhanced functional properties. Biol. Res. 2011, 44, 339–344. [Google Scholar] [CrossRef]
- Schmitzer, V.; Slatnar, A.; Mikulic-Petkovsek, M.; Veberic, R.; Krska, B.; Stampar, F. Comparative study of primary and secondary metabolites in apricot (Prunus armeniaca L.) cultivars. J. Sci. Food Agric. 2011, 91, 860–866. [Google Scholar] [CrossRef]
- Ruiz, D.; Egea, J.; Tomás-Barberán, F.A.; Gil, M.I. Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. J. Agric. Food Chem. 2005, 53, 6368–6374. [Google Scholar] [CrossRef]
- Amoriello, T.; Ciccoritti, R.; Paliotta, M.; Carbone, K. Classification and prediction of early-to-late ripening apricot quality using spectroscopic techniques combined with chemometric tools. Sci. Hortic. 2018, 240, 310–317. [Google Scholar] [CrossRef]
- Ciaccia, C.; Ceccarelli, D.; Antichi, D.; Canali, S. Long-term experiments on agroecology and organic farming: The Italian long-term experiment network. In Long-Term Farming Systems Research; Bhullar, G., Riar, A., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: London, UK, 2020; pp. 183–196. [Google Scholar]
- Milošević, T.; Milošević, N.; Glišić, I. Tree growth, yield, fruit quality attributes and leaf nutrient content of ‘Roxana’apricot as influenced by natural zeolite, organic and inorganic fertilisers. Sci. Hortic. 2013, 156, 131–139. [Google Scholar] [CrossRef]
- Stojanov, D.; Milošević, T.; Mašković, P.; Milošević, N.; Glišić, I.; Paunović, G. Influence of organic, organo-mineral and mineral fertilisers on cane traits, productivity and berry quality of red raspberry (Rubus idaeus L.). Sci. Hortic. 2019, 252, 370–378. [Google Scholar] [CrossRef]
- Colazo, J.C.; Buschiazzo, D. The impact of agriculture on soil texture due to wind erosion. Land Degrad. Dev. 2015, 26, 62–70. [Google Scholar] [CrossRef]
- Novara, A.; Rühl, J.; La Mantia, T.; Gristina, L.; La Bella, S.; Tuttolomondo, T. Litter contribution to soil organic carbon in the processes of agriculture abandon. Solid Earth 2015, 6, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Cai, L. Multi-scale anthropogenic driving forces of Karst Rocky desertification in Southwest China. Land Degrad. Dev. 2015, 26, 193–200. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- European Commission (EC). From Farm to Fork: Our Food, Our Health, Our Planet, Our Future. The European Green Deal. Factsheet. 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/fs_20_908 (accessed on 25 June 2021).
- European Commission (EC). Bringing Nature Back into Our Lives. EU 2030 Biodiversity Strategy. Factsheet. 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/fs_20_906 (accessed on 25 June 2021).
- Levidow, L.; Pimbert, M.; Vanloqueren, G. Agroecological Research: Conforming or Transforming the Dominant Agro-Food Regime? Agroecol. Sust. Food 2014, 38, 1127–1155. [Google Scholar] [CrossRef]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Demir, Z.; Tursun, N.; Işık, D. Effects of different cover crops on soil quality parameters and yield in an apricot orchard. Int. J. Agric. Biol. 2019, 21, 399–408. [Google Scholar]
- Brevik, E.C. Soil Health and Productivity. In Soils, Plant Growth and Crop Production—Volume 1; Brevik, E.C., Verheye, W., Eds.; Encyclopedia of Life Support Systems (EOLSS); EOLSS Publishers: Oxford, UK, 2009; Available online: http://www.eolss.net (accessed on 15 May 2021).
- Ciaccia, C.; Di Pierro, M.; Testani, E.; Roccuzzo, G.; Cutuli, M.; Ceccarelli, D. Participatory Research towards Food System Redesign: Italian Case Study and Perspectives. Sustainability 2019, 11, 7138. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, D.; Antonucci, F.; Costa, C.; Talento, C.; Ciccoritti, R. An artificial class modelling approach to identify the most largely diffused cultivars of sweet cherry (Prunus avium L.) in Italy. Food Chem. 2020, 333, 127515. [Google Scholar] [CrossRef]
- Ruiz, D.; Egea, J. Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 2008, 163, 143–158. [Google Scholar] [CrossRef]
- Carbone, K.; Ciccoritti, R.; Paliotta, M.; Rosato, T.; Terlizzi, M.; Cipriani, G. Chemometric classification of early-ripening apricot (Prunus armeniaca, L.) germplasm based on quality traits, biochemical profiling and in vitro biological activity. Sci. Hortic. 2018, 227, 187–195. [Google Scholar] [CrossRef]
- Pérez-Sarmiento, F.; Mirás-Avalos, J.M.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolás, E. Effects of regulated deficit irrigation on physiology, yield and fruit quality in apricot trees under Mediterranean conditions. Span. J. Agric. Res. 2016, 14, 1205. [Google Scholar] [CrossRef] [Green Version]
- Bureau, S.; Renard, C.M.; Reich, M.; Ginies, C.; Audergon, J.M. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Sci. Technol. 2009, 42, 372–377. [Google Scholar] [CrossRef]
- Bartolini, S.; Leccese, A.; Remorini, D.; Iacona, C.; Viti, R. Quality and antioxidant traits of organic apricots (Prunus armeniaca L.) at harvest and after storage. J. Sci. Food Agric. 2019, 83, 12–17. [Google Scholar] [CrossRef]
- Salazar, J.A.; Rubio, M.; Ruiz, D.; Tartarini, S.; Martínez-Gómez, P.; Dondini, L. SNP development for genetic diversity analysis in apricot. Tree Genet. Genomes 2015, 11, 15. [Google Scholar] [CrossRef]
- European Commission. 2001 European Commission Commission Regulation (EC) No. 112/2001 of 28 Amending Annex II (Technical Regulations, Standards, Testing and Certification) to the EEA Agreement. Off. J. Eur. Communities 2001, L92, 9–10. Available online: https://eur-lex.europa.eu/legal-content (accessed on 25 June 2021).
- Kafkaletou, M.; Kalantzis, I.; Karantzi, A.; Christopoulos, M.V.; Tsantili, E. Phytochemical characterization in traditional and modern apricot (Prunus armeniaca L.) cultivars–Nutritional value and its relation to origin. Sci. Hortic. 2019, 253, 195–202. [Google Scholar] [CrossRef]
- Milatović, D.; Đurović, D.; Zec, G. Evaluation of french apricot cultivars in the region of Belgrade. In IV International Symposium Agrosym 2013, Jahorina, Bosnia and Herzegovina, 3–6 October 2013; Faculty of Agriculture, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina: Lukavica, Republika Srpska, 2013; pp. 196–201. [Google Scholar]
- Gurrieri, F.; Audergon, J.M.; Albagnac, G.; Reich, M. Soluble sugars and carboxylic acids in ripe apricot fruit as parameters for distinguishing different cultivars. Euphytica 2001, 117, 183–189. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Crisosto, G.M. Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid melting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biol. Technol. 2005, 38, 239–246. [Google Scholar] [CrossRef]
- Amoriello, T.; Ciccoritti, R.; Carbone, K. Vibrational spectroscopy as a green technology for predicting nutraceutical properties and antiradical potential of early-to-late apricot genotypes. Postharvest Biol. Technol. 2019, 155, 156–166. [Google Scholar] [CrossRef]
- Bartolini, S.; Leccese, A.; Viti, R. Quality and antioxidant properties of apricot fruits at ready-to-eat: Influence of the weather conditions under Mediterranean coastal area. J. Food Process. Technol. 2015, 7, 1–6. [Google Scholar]
- Tarantino, A.; Lops, F.; Disciglio, G.; Lopriore, G. Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange rubis®’apricot (Prunus armeniaca L.) cultivar in two consecutive years. Sci. Hortic. 2018, 239, 26–34. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Antonucci, F.; Talento, C.; Ciccoritti, R. Chemical characterization in the selection of Italian autochthonous genotypes of plum. Sci. Hortic. 2021, 281, 109922. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Antonucci, F.; Talento, C.; Costa, C.; Caboni, E.; Ciccoritti, R. Can environment and genotype influence sweet cherry qualitative parameters? Plant Biosyst. 2021, 1–9. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharv. Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Frankel, E.N.; Meyer, A.S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941. [Google Scholar] [CrossRef]
- Sahamishirazi, S.; Moehring, J.; Claupein, W.; Graeff-Hoenninger, S. Quality assessment of 178 cultivars of plum regarding phenolic, anthocyanin and sugar content. Food Chem. 2017, 214, 694–701. [Google Scholar] [CrossRef]
- Solovchenko, A.; Schmitz-Eiberger, M. Significance of skin flavonoids for UV-B-protection in apple fruits. J. Exp. Bot. 2003, 54, 1977–1984. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Cuquel, F.L.; Motta, A.C.V.; Tutida, I.; Mio, L.L.M.D. Nitrogen and potassium fertilization affecting the plum postharvest quality. Rev. Bras. Frutic. 2011, 33, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Winter, C.K.; Davis, S.F. Organic foods. J. Food Sci. 2006, 71, 117–124. [Google Scholar] [CrossRef]
- Stewart, A.J.; Chapman, W.; Jenkins, G.I.; Graham, I.; Martin, T.; Crozier, A. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ. 2001, 24, 1189–1197. [Google Scholar] [CrossRef]
- Nie, X.; Li, Z.; Huang, J.; Huang, B.; Zhang, Y.; Ma, W.; Hu, Y.; Zeng, G. Soil organic carbon loss and selective transportation under field simulated rainfall events. PLoS ONE 2014, 9, 105927. [Google Scholar] [CrossRef]
- Massantini, R.; Radicetti, E.; Frangipane, M.T.; Campiglia, E. Quality of Tomato (Solanum lycopersicum L.) Changes under Different Cover Crops, Soil Tillage and Nitrogen Fertilization Management. Agriculture 2021, 11, 106. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Antichi, D.; Guidi, L.; Manfrini, L.; Monti, M.; Tosti, G.; Frasconi, C. Bioactive Properties of fruits and leafy vegetables managed with integrated, organic, and organic no-tillage practices in the Mediterranean area: A two-year rotation experiment. Agronomy 2020, 10, 841. [Google Scholar] [CrossRef]
- Reeve, J.R.; Hoagland, L.A.; Villalba, J.J.; Carr, P.M.; Atucha, A.; Cambardella, C.; Davis, D.R.; Delate, K. Organic farming, soil health, and food quality: Considering possible links. Adv. Agron. 2016, 137, 319–367. [Google Scholar]
- Rodrigues, M.Â.; Arrobas, M. Cover cropping for increasing fruit production and farming sustainability. Fruit Crops 2020, 279–295. [Google Scholar]
- Rodrigues, M.A.; Lopes, J.I.; Pavao, F.M.; Cabanas, J.E.; Arrobas, M. Effect of soil management on olive yield and nutritional status of trees in rainfed orchards. Commun. Soil. Sci. Plant Anal. 2011, 42, 993–1007. [Google Scholar] [CrossRef]
- Sarrantonio, M.; Gallandt, E. The role of cover crops in North American cropping systems. J. Crop Prod. 2003, 8, 53–74. [Google Scholar] [CrossRef]
BAU 1 | INC 2 | ICC 3 | |
---|---|---|---|
Tillage | Tillage at planting Hoeing twice per year | No tillage at planting (transplanting furrow and soil ripping in central inter-row space) Strip hoeing for compost ploughing close to the apricot trees | Tillage at planting Hoeing twice per year |
Fertilization | Commercial organic fertilizer (24% of organic Carbon and 5% of organic N content on dry basis) Distribution once per year in autumn | Municipal waste compost (37% of organic Carbon and 2.8% of organic N content on dry basis) Distribution once per year in autumn | Municipal waste compost (37% of organic Carbon and 2.8% of organic N content on dry basis) Distribution once per year in autumn |
Irrigation | Drip system (About 1500 m3 ha−1 from June to September for 2 times a week in 12 h at a time) | Drip system (About 1500 m3 ha−1 from June to September for 2 times a week in 12 h at a time) | Drip system (About 1500 m3 ha−1 from June to September for 2 times a week in 12 h at a time) |
Cover management | Natural cover, mowed twice per year (spring, autumn) | Natural cover, mowed twice per year (spring, autumn) | Natural cover (spring to autumn) mowed in autumn Cover crop mixtures and strips sowed in autumn and terminated in spring |
AT_MIN (°C) | AT_MAX (°C) | AT_MEAN (°C) | RH (%) | SR (W/M2) | ST (°C) | RF (MM) | |
---|---|---|---|---|---|---|---|
JUL-18 | 20.8 | 32.9 | 26.2 | 65.7 | 266 | 26.4 | 40.8 |
AUG-18 | 20.6 | 33.1 | 24.9 | 74.9 | 209 | 24.9 | 120.2 |
SEP-18 | 17.4 | 28.7 | 21.7 | 78.3 | 172 | 22.7 | 47.8 |
OCT-18 | 14.8 | 24.1 | 18.1 | 80.8 | 102 | 18.6 | 156.6 |
NOV-18 | 10.2 | 17.8 | 13.1 | 84.3 | 64 | 14.0 | 131.8 |
DEC-18 | 5.9 | 13.6 | 8.8 | 87.4 | 72 | 9.6 | 35.0 |
JAN-19 | 3.3 | 10.8 | 6.0 | 82.2 | 59 | 6.2 | 85.0 |
FEB-19 | 5.3 | 15.3 | 9.0 | 75.5 | 105 | 7.7 | 56.6 |
MAR-19 | 7.8 | 18.1 | 11.7 | 75.3 | 146 | 10.2 | 19.0 |
APR-19 | 10.0 | 19.4 | 13.5 | 81.1 | 182 | 12.9 | 89.8 |
MAY-19 | 11.6 | 19.8 | 14.9 | 85.8 | 184 | 15.1 | 212.8 |
JUN-19 | 19.2 | 32.3 | 24.4 | 70.0 | 277 | 20.7 | 0.4 |
JUL-19 | 21.2 | 33.1 | 26.4 | 63.8 | 260 | 25.1 | 24.2 |
AUG-19 | 21.8 | 33.7 | 26.4 | 64.8 | 230 | 25.7 | 18.2 |
SEP-19 | 18.0 | 28.5 | 22.1 | 72.8 | 171 | 22.8 | 37.2 |
OCT-19 | 14.4 | 24.3 | 17.9 | 81.1 | 118 | 18.1 | 51.0 |
NOV-19 | 12.1 | 17.5 | 14.0 | 88.2 | 55 | 15.2 | 302.6 |
DEC-19 | 8.1 | 14.9 | 10.0 | 82.9 | 53 | 11.1 | 73.2 |
JAN-20 | 4.7 | 14.0 | 7.6 | 83.8 | 68 | 6.7 | 16.0 |
FEB-20 | 7.3 | 16.6 | 10.4 | 75.8 | 117 | 8.9 | 8.2 |
MAR-20 | 8.0 | 16.7 | 10.9 | 76.3 | 158 | 9.8 | 51.8 |
APR-20 | 10.4 | 20.7 | 14.0 | 78.4 | 205 | 13.8 | 33.6 |
MAY-20 | 15.5 | 25.5 | 19.2 | 66.3 | 237 | 18.2 | 14.6 |
JUN-20 | 18.5 | 27.4 | 21.9 | 69.5 | 268 | 21.2 | 36.6 |
CV | Tr | Mean | SD | Min | Max | Q1 | Median | Q3 | |
---|---|---|---|---|---|---|---|---|---|
SSC | KM | BAU | 17.7 | 3.5 | 13.6 | 21.6 | 14.4 | 17.7 | 21.1 |
ICC | 17.2 | 2.6 | 14.3 | 20.3 | 14.7 | 17.1 | 19.7 | ||
INC | 17.5 | 2.8 | 14.3 | 22.3 | 15.1 | 16.7 | 20.0 | ||
KM_Overall | 17.4 | 2.9 | 13.6 | 22.3 | 14.6 | 16.7 | 20.3 | ||
PM | BAU | 20.1 | 2.9 | 16.2 | 24.1 | 17.4 | 20.0 | 22.7 | |
ICC | 17.5 | 1.4 | 15.1 | 20.0 | 16.6 | 17.4 | 18.7 | ||
INC | 19.5 | 3.0 | 14.3 | 22.6 | 16.9 | 20.8 | 21.9 | ||
PM_Overall | 19.0 | 2.7 | 14.3 | 24.1 | 16.9 | 18.5 | 21.7 | ||
TA | KM | BAU | 19.8 | 3.1 | 15.7 | 25.2 | 17.3 | 18.3 | 22.2 |
ICC | 20.8 | 3.1 | 16.4 | 25.4 | 17.8 | 20.7 | 23.5 | ||
INC | 21.4 | 2.4 | 17.9 | 26.7 | 19.6 | 21.1 | 22.3 | ||
KM_Overall | 20.6 | 2.9 | 15.7 | 26.7 | 18.0 | 20.3 | 23.2 | ||
PM | BAU | 18.0 | 0.8 | 16.9 | 19.8 | 17.3 | 17.8 | 18.5 | |
ICC | 21.3 | 0.9 | 19.3 | 22.5 | 20.7 | 21.5 | 22.1 | ||
INC | 19.2 | 1.9 | 15.5 | 22.3 | 18.0 | 19.6 | 20.5 | ||
PM_Overall | 19.5 | 1.9 | 15.5 | 22.5 | 17.8 | 19.6 | 21.0 | ||
SSC:TA | KM | BAU | 0.8 | 0.1 | 0.6 | 1.1 | 0.7 | 0.8 | 0.9 |
ICC | 0.9 | 0.3 | 0.5 | 1.2 | 0.8 | 0.8 | 1.1 | ||
INC | 1.0 | 0.2 | 0.8 | 1.3 | 0.8 | 1.0 | 1.2 | ||
KM_Overall | 0.9 | 0.2 | 0.6 | 1.2 | 0.8 | 0.9 | 1.1 | ||
PM | BAU | 0.9 | 0.1 | 0.7 | 1.1 | 0.7 | 0.9 | 1.0 | |
ICC | 0.9 | 0.2 | 0.6 | 1.3 | 0.8 | 0.9 | 1.0 | ||
INC | 1.1 | 0.2 | 0.8 | 1.3 | 0.8 | 1.1 | 1.2 | ||
KM_Overall | 1.0 | 0.2 | 0.7 | 1.3 | 0.8 | 1.0 | 1.1 | ||
DM | KM | BAU | 0.20 | 0.06 | 0.14 | 0.26 | 0.14 | 0.19 | 0.25 |
ICC | 0.19 | 0.03 | 0.15 | 0.24 | 0.16 | 0.18 | 0.22 | ||
INC | 0.19 | 0.02 | 0.16 | 0.22 | 0.17 | 0.19 | 0.21 | ||
KM_Overall | 0.19 | 0.04 | 0.14 | 0.26 | 0.16 | 0.19 | 0.22 | ||
PM | BAU | 0.22 | 0.03 | 0.18 | 0.28 | 0.20 | 0.21 | 0.25 | |
ICC | 0.20 | 0.02 | 0.18 | 0.23 | 0.18 | 0.19 | 0.21 | ||
INC | 0.22 | 0.02 | 0.19 | 0.26 | 0.20 | 0.23 | 0.24 | ||
PM_Overall | 0.21 | 0.03 | 0.18 | 0.28 | 0.19 | 0.21 | 0.24 | ||
TPC | KM | BAU | 303 | 121 | 211 | 500 | 218 | 230 | 433 |
ICC | 429 | 95 | 299 | 528 | 334 | 449 | 517 | ||
INC | 289 | 38 | 234 | 325 | 243 | 306 | 321 | ||
KM_Overall | 341 | 110 | 211 | 528 | 235 | 316 | 433 | ||
PM | BAU | 383 | 59 | 277 | 436 | 336 | 411 | 427 | |
ICC | 444 | 88 | 302 | 565 | 372 | 462 | 504 | ||
INC | 358 | 64 | 273 | 475 | 334 | 337 | 393 | ||
PM_Overall | 395 | 79 | 273 | 565 | 335 | 398 | 445 | ||
AA | KM | BAU | 1.18 | 0.28 | 0.85 | 1.58 | 0.92 | 1.14 | 1.44 |
ICC | 1.16 | 0.23 | 0.85 | 1.57 | 0.97 | 1.15 | 1.24 | ||
INC | 1.23 | 0.45 | 0.80 | 1.83 | 0.81 | 1.14 | 1.68 | ||
KM_Overall | 1.19 | 0.33 | 0.80 | 1.83 | 0.85 | 1.15 | 1.48 | ||
PM | BAU | 1.18 | 0.29 | 0.86 | 1.54 | 0.90 | 1.15 | 1.5 | |
ICC | 1.11 | 0.31 | 0.84 | 1.68 | 0.85 | 1.02 | 1.23 | ||
INC | 1.16 | 0.38 | 0.81 | 1.70 | 0.83 | 1.00 | 1.62 | ||
PM_Overall | 1.15 | 0.32 | 0.81 | 1.70 | 0.86 | 1.03 | 1.46 |
SSC | TA | DM | TPC | AA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
χ2 | Pr > χ2 | χ2 | Pr > χ2 | χ2 | Pr > χ2 | χ2 | Pr > χ2 | χ2 | Pr > χ2 | |
CV | 13.66 | 0.0002 | 0.01 | 0.9282 | 40.05 | <0.0001 | 0.58 | 0.4461 | 0.23 | 0.6326 |
M | 2.94 | 0.0865 | 0.00 | 0.9967 | 44.66 | <0.0001 | 11.76 | 0.0006 | 12.87 | 0.0003 |
Year | 61.22 | <0.0001 | 0.01 | 0.9118 | 117.17 | <0.0001 | 4.78 | 0.0288 | 11.70 | 0.0006 |
CV × M | 0.98 | 0.3218 | 0.05 | 0.8151 | 0.26 | 0.6113 | 0.68 | 0.4094 | 0.73 | 0.3927 |
CV × Year | 13.67 | 0.0002 | 0.01 | 0.9286 | 40.06 | <0.0001 | 0.58 | 0.4469 | 0.23 | 0.6325 |
M × Year | 2.94 | 0.0864 | 0.00 | 0.9974 | 44.66 | <0.0001 | 11.75 | 0.0006 | 12.88 | 0.0003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciccoritti, R.; Ciorba, R.; Mitrano, F.; Cutuli, M.; Amoriello, T.; Ciaccia, C.; Testani, E.; Ceccarelli, D. Diversification and Soil Management Effects on the Quality of Organic Apricots. Agronomy 2021, 11, 1791. https://doi.org/10.3390/agronomy11091791
Ciccoritti R, Ciorba R, Mitrano F, Cutuli M, Amoriello T, Ciaccia C, Testani E, Ceccarelli D. Diversification and Soil Management Effects on the Quality of Organic Apricots. Agronomy. 2021; 11(9):1791. https://doi.org/10.3390/agronomy11091791
Chicago/Turabian StyleCiccoritti, Roberto, Roberto Ciorba, Francesco Mitrano, Marcello Cutuli, Tiziana Amoriello, Corrado Ciaccia, Elena Testani, and Danilo Ceccarelli. 2021. "Diversification and Soil Management Effects on the Quality of Organic Apricots" Agronomy 11, no. 9: 1791. https://doi.org/10.3390/agronomy11091791