Next Article in Journal
Volume Hologram Formation in SU-8 Photoresist
Previous Article in Journal
Apoptin Gene Delivery by the Functionalized Polyamidoamine (PAMAM) Dendrimer Modified with Ornithine Induces Cell Death of HepG2 Cells
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Polymers 2017, 9(6), 194; doi:10.3390/polym9060194

Synthesis of Polymer Nanocomposites Based on [Methyl Cellulose](1−x):(CuS)x (0.02 M ≤ x ≤ 0.08 M) with Desired Optical Band Gaps

1
Advanced Materials Research Lab., School of Science-Department of Physics, Faculty of Science and Science Education, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq
2
DevelopmentCenter for Research and Training (DCRT), University of Human Development, Qrga Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq
*
Author to whom correspondence should be addressed.
Academic Editor: Wei Min Huang
Received: 30 April 2017 / Revised: 22 May 2017 / Accepted: 25 May 2017 / Published: 30 May 2017
View Full-Text   |   Download PDF [3339 KB, uploaded 30 May 2017]   |  

Abstract

In this paper, the sample preparation of polymer nanocomposites based on methyl cellulose (MC) with small optical bandgaps has been discussed. Copper monosulfide (CuS) nanoparticles have been synthesized from the sodium sulphide (Na2S) and copper chloride (CuCl2) salts. Distinguishable localized surface resonance plasmon (LSRP) absorption peaks for CuS nanoparticles within the 680–1090 nm scanned wavelength range were observed for the samples. An absorption edge (Ed) was found to be widely shifted to a lower photon energy region. A linear relationship between the refractive index of the samples and the CuS fraction was utilized to describe the distribution of the particle. The optical bandgap of MC was reduced from 6.2 to 2.3 eV upon the incorporation of 0.08 M of CuS nanoparticles. The optical dielectric loss, as an alternative method, was used successfully to estimate the optical bandgap. Moreover, the electronic transition type was identified by using Tauc’s extrapolation method. The plots of the optical dielectric constant and energy bandgap as a function of the CuS concentration were utilized to examine the validity of the Penn model. For the nanocomposite samples, the Urbach energy was found to be increased, which can be evidence for a large possible number of bands-to-tail and tail-to-tail transitions. However, from the X-ray diffraction (XRD) analysis, it was also found that the synthesized CuS nanoparticles disrupted the crystallinity phase of the MC polymer. Finally, fourier transform infrared (FTIR) spectroscopy for the samples was also performed. Significant decreases of transmittance intensity as well as band shifting in the FTIR spectra were observed for the doped samples. View Full-Text
Keywords: methyl cellulose (MC) nanocomposite; SPR band; bandgap study; optical dielectric function; XRD; FTIR study methyl cellulose (MC) nanocomposite; SPR band; bandgap study; optical dielectric function; XRD; FTIR study
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Aziz, S.B.; Rasheed, M.A.; Ahmed, H.M. Synthesis of Polymer Nanocomposites Based on [Methyl Cellulose](1−x):(CuS)x (0.02 M ≤ x ≤ 0.08 M) with Desired Optical Band Gaps. Polymers 2017, 9, 194.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top