Next Article in Journal
Electrodeposition of Mn-Co/Polypyrrole Nanocomposites: An Electrochemical and In Situ Soft-X-ray Microspectroscopic Investigation
Previous Article in Journal
Preparation and Properties of Branched Polystyrene through Radical Suspension Polymerization
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Polymers 2017, 9(1), 18; doi:10.3390/polym9010018

Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres

Department of Material and Commodity Sciences and Textile Metrology, Faculty of Material Technologies and Textile Design, Centre of Advanced Technologies of Human-Friendly Textiles “Pro Humano Tex”, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
*
Author to whom correspondence should be addressed.
Academic Editor: Russell E. Gorga
Received: 19 November 2016 / Revised: 29 December 2016 / Accepted: 3 January 2017 / Published: 6 January 2017
View Full-Text   |   Download PDF [1366 KB, uploaded 6 January 2017]   |  

Abstract

In this paper, the influence of the molecular structure of polylactide (PLA)—characterised by its molar mass and content of d-lactide isomer—on the molecular ordering and α’–α form transition during fibre manufacturing by the wet spinning method is described. Fibres were studied by wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). Additionally, the physical and mechanical properties of the fibres were determined. This study also examines the preliminary molecular ordering and crystallisation of PLA fibres at various draw ratios. The performed experiments clearly show the dependence of the molecular ordering of PLA on the molar mass and d-lactide content during the wet spinning process. The fibres manufactured from PLA with the lowest content of d-lactide and the lowest molar mass were characterised by a higher tendency for crystallisation and a higher possibility to undergo the disorder-to-order phase transition (α’ to α form). The structural changes in PLA explain the observed changes in the physical and mechanical properties of the obtained fibres. View Full-Text
Keywords: polylactide; crystallisation; crystalline forms; wet spinning; fibres; WAXD; DSC polylactide; crystallisation; crystalline forms; wet spinning; fibres; WAXD; DSC
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Puchalski, M.; Kwolek, S.; Szparaga, G.; Chrzanowski, M.; Krucińska, I. Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres. Polymers 2017, 9, 18.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top