Polymers 2017, 9(1), 14; doi:10.3390/polym9010014
Preparation and Properties of Branched Polystyrene through Radical Suspension Polymerization
School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
*
Author to whom correspondence should be addressed.
Academic Editor: Shin-ichi Yusa
Received: 15 November 2016 / Revised: 21 December 2016 / Accepted: 28 December 2016 / Published: 6 January 2017
Abstract
Radical solvent-free suspension polymerization of styrene with 3-mercapto hexyl-methacrylate (MHM) as the branching monomer has been carried out using 2,2′-azobisisobutyronitrile (AIBN) as the initiator to prepare branched polymer beads of high purity. The molecular weight and branching structure of the polymers have been characterized by triple detection size exclusion chromatography (TD-SEC), proton nuclear magnetic resonance spectroscopy (1H-NMR), and Fourier transform infrared spectroscopy (FTIR). The glass transition temperature and rheological properties have been measured by using differential scanning calorimetry (DSC) and rotational rheometry. At mole ratios of MHM to AIBN less than 1.0, gelation was successfully avoided and branched polystyrene beads were prepared in the absence of any solvent. Branched polystyrene has a relatively higher molecular weight and narrower polydispersity (Mw.MALLS = 1,036,000 g·mol−1, Mw/Mn = 7.76) than those obtained in solution polymerization. Compared with their linear analogues, lower glass transition temperature and decreased chain entanglement were observed in the presently obtained branched polystyrene because of the effects of branching. View Full-Text
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Share & Cite This Article
MDPI and ACS Style
Huang, W.; Gu, W.; Yang, H.; Xue, X.; Jiang, B.; Zhang, D.; Fang, J.; Chen, J.; Yang, Y.; Guo, J. Preparation and Properties of Branched Polystyrene through Radical Suspension Polymerization. Polymers 2017, 9, 14.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Related Articles
Article Metrics
Comments
[Return to top]
Polymers
EISSN 2073-4360
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert