Polymeric Composite Reinforced with PET Fiber Waste for Application in Civil Construction as a Cladding Element
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composites Speciments
2.3. PET Fiber Morphological Characterization
2.4. Composite Characterization
2.4.1. Mechanical Characterization of Composites
2.4.2. Morphological Analysis of Fractured Composites
2.4.3. Chemical Resistance of Composites
3. Results and Discussion
3.1. Fiber Morphological Characterization
3.2. Mechanical Characterization of Composites
3.3. Morphological Analysis of Fractured Composites
3.4. Chemical Resistance of Composites
3.5. Behavior of Composites to Ultraviolet Exposure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manjunath, R.N.; Khatkar, V.; Behera, B.K. Comparative assessment of static and dynamic mechanical properties of glass and PET fiber reinforced epoxy composites. Mater. Today Proc. 2019, 18, 4048–4057. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2017. Earth Syst. Sci. Data 2018, 10, 2213–2239. [Google Scholar] [CrossRef] [Green Version]
- Ellis, L.D.; Badel, A.F.; Chiang, M.L.; Park, R.J.; Chiang, Y.M. Toward electrochemical synthesis of cement—An electrolyzer-based process for decarbonating CaCO3 while producing useful gas streams. Proc. Natl. Acad. Sci. USA 2020, 117, 12584–12591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Bilal, M.; Khan, K.I.; Thaheem, M.J.; Nasir, A.R. Current state and barriers to the circular economy in the building sector: Towards a mitigation framework. J. Clean. Prod. 2020, 276, 123250. [Google Scholar] [CrossRef]
- Lin, A.; Tan, Y.K.; Wang, C.H.; Kua, H.W.; Taylor, H. Utilization of waste materials in a novel mortar–polymer laminar composite to be applied in construction 3D-printing. Compos. Struct. 2020, 253, 112764. [Google Scholar] [CrossRef]
- Meyers, M.A.; Krishan, K.C. Mechanical Behavior of Materials; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Neto, F.L.; Luiz, C.P. Compósitos Estruturais: Ciência E Tecnologia; Editora Blucher: São Paulo, Brazil, 2016. [Google Scholar]
- Marinucci, G. Materiais Compósitos Poliméricos: Fundamentos E Tecnologia; Artliber: São Paulo, Brazil, 2011. [Google Scholar]
- NBR 15575-3; Edificações Habitacionais—Desempenho Parte 3: Requisitos para os sistemas de pisos. ABNT: Rio de Janeiro, Brazi, 2013.
- Kordsa. Available online: https://www.kordsa.com/en/products/tire-reinforcement-detail/tire-reinforcement/24/39/0 (accessed on 9 March 2022).
- Pereira, B.S.; Barbosa, R.; Alves, T.S. Avaliação da morfologia e propriedades mecânicas de compósitos laminados a base de epóxi, cortiça e microesferas de vidro. Matéria 2019, 24, 12440. [Google Scholar] [CrossRef]
- ISO 178; Plastics—Determination of Flexural Properties. International Organization of Standards: Geneva, Switzerland, 2001.
- ISO 180; Plastics—Determination of Izod Impact Strength. International Organization of Standards: Geneva, Switzerland, 2019.
- ASTM G154-12; Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials. ASTM: West Conshohocken, NJ, USA, 2016.
- ASTM E1252-98Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis, ASTM: West Conshohocken, NJ, USA, 2021.
- Shaikh, F.U.A. Tensile and flexural behaviour of recycled polyethylene terephthalate (PET) fibre reinforced geopolymer composites. Constr. Build. Mater. 2020, 245, 118438. [Google Scholar] [CrossRef]
- Camargo, M.M.; Adefrs Taye, E.; Roether, J.A.; Tilahun Redda, D.; Boccaccini, A.R. A review on natural fiber-reinforced geopolymer and cement-based composites. Materials 2020, 13, 4603. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Zhou, Y.; Fan, M. Revealing the interface structure and bonding mechanism of coupling agent treated WPC. Polymers 2018, 10, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgari, M.; Masoomi, M. Thermal and impact study of PP/PET fibre composites compatibilized with glycidyl methacrylate and maleic anhydride. Compos. Part B Eng. 2012, 43, 1164–1170. [Google Scholar] [CrossRef]
- Zarate, C.N.; Aranguren, M.I.; Reboredo, M.M. Influence of fiber volume fraction and aspect ratio in resol–sisal composites. J. Appl. Polym. Sci. 2003, 89, 2714–2722. [Google Scholar] [CrossRef]
- Barbos, J.D.; Azevedo, J.B.; Pollyana da Silva, M.C.; da Costa Garcia Filho, F.; del Rio, T.G. Development and characterization of WPCs produced with high amount of wood residue. J. Mater. Res Technol. 2020, 9, 9684–9690. [Google Scholar] [CrossRef]
- Várdai, R.; Lummerstorfer, T.; Pretschuh, C.; Jerabek, M.; Gahleitner, M.; Bartos, A.; Móczó, J.; Anggono, J.; Pukánszky, B. Improvement of the impact resistance of natural fiber–reinforced polypropylene composites through hybridization. Polym. Adv. Technol. 2021, 32, 2499–2507. [Google Scholar] [CrossRef]
- Cunha, R.A.; Santos, J.K.; Cunha, R.D.; Mendes, J.U. Influência do Envelhecimento Acelerado nas Propriedades Mecânicas do PRFV Quando Imerso em Petróleo. HOLOS 2017, 5, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Saleh, H.E.-D.M. (Ed.) Polyester; BoD–Books on Demand: Norderstedt, Germany, 2012. [Google Scholar]
- Santos, R.P.d.O. Compósitos Baseados em PET Reciclado, Fibras de Sisal e Plasticizantes Oriundos de Fontes Renováveis: Estudo do Processamento e Propriedades Destes Materiais. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2012. [Google Scholar] [CrossRef] [Green Version]
Damage Levels | Description |
---|---|
4 | No visible changes. |
3 | Slight to moderate in brightness and/or color, visible at any angle of observation. |
2 | Severe change in brightness and/or color, but no surface attack. |
1 | Surface attack in the form of cracks, fissures or bubbles. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, D.; Azevedo, J.; Cardoso, P.; Lazarus, B.; Morreira, M.; Silva, L.; Barbosa, J. Polymeric Composite Reinforced with PET Fiber Waste for Application in Civil Construction as a Cladding Element. Polymers 2022, 14, 1293. https://doi.org/10.3390/polym14071293
Araujo D, Azevedo J, Cardoso P, Lazarus B, Morreira M, Silva L, Barbosa J. Polymeric Composite Reinforced with PET Fiber Waste for Application in Civil Construction as a Cladding Element. Polymers. 2022; 14(7):1293. https://doi.org/10.3390/polym14071293
Chicago/Turabian StyleAraujo, Daniel, Joyce Azevedo, Pollyana Cardoso, Benjamin Lazarus, Matheus Morreira, Lorrane Silva, and Josiane Barbosa. 2022. "Polymeric Composite Reinforced with PET Fiber Waste for Application in Civil Construction as a Cladding Element" Polymers 14, no. 7: 1293. https://doi.org/10.3390/polym14071293