Adsorption of Uranium, Mercury, and Rare Earth Elements from Aqueous Solutions onto Magnetic Chitosan Adsorbents: A Review
Abstract
:1. Introduction
2. Synthetic Routes and Characterizations
2.1. Synthetic Routes and Characterizations for Uranium Adsorption
2.2. Synthetic Routes and Characterizations for Mercury Adsorption
2.3. Synthetic Routes and Characterizations for Rare Earth Elements Adsorption
3. Adsorption Evaluation
3.1. Isotherm Models and Kinetic Equations
3.1.1. Isotherm Models
3.1.2. Kinetic Equations
3.2. Discussion
3.2.1. Uranium Compounds—PH Effect
3.2.2. Uranium Compounds—Evaluation of Adsorption Isotherm Models
3.2.3. Uranium Compounds—Adsorption Kinetics
3.3. Hg (II) Removal
3.3.1. Mercury Compounds—PH Effect
3.3.2. Mercury Compounds—Evaluation of Adsorption Isotherms Models
3.3.3. Mercury Compounds—Adsorption Kinetics
3.4. Rare Earth Elements
3.4.1. Rare Earth Elements—PH Effect
3.4.2. Rare Earth Elements—Evaluation of Adsorption Isotherms Models
3.4.3. Rare Earth Elements—Adsorption Kinetics
3.5. Adsorption Mechanisms for the Removal of Uranium from Aqueous Solution
3.6. Adsorption Mechanisms for the Removal of Mercury from Aqueous Solution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, L.; Jia, Y.; Peng, J.; Liu, Z.; Al-Zaini, E. Competitive adsorption of uranium(VI) and thorium(IV) ions from aqueous solution using triphosphate-crosslinked magnetic chitosan resins. J. Radioanal. Nucl. Chem. 2014, 302, 331–340. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Cagnetta, G.; Wang, W.; Meng, P.; Liu, D.; Yu, G. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Sep. Purif. Technol. 2019, 224, 373–387. [Google Scholar] [CrossRef]
- da Silva Alves, D.C.; Healy, B.; Pinto, L.A.d.A.; Cadaval, T.R.S.A.; Breslin, C.B. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021, 26, 594. [Google Scholar] [CrossRef]
- Joshiba, G.J.; Kumar, P.S.; Christopher, F.C.; Govindaraj, B.B. Insights of CMNPs in water pollution control. IET Nanobiotechnol. 2019, 13, 553–559. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, S.; Swami, B.; Ikram, S. Adsorption of heavy metal ions: Role of chitosan and cellulose for water treatment. Int. J. Pharmacogn. 2015, 2, 280–289. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Zhou, L.; Ouyang, J.; Shehzad, H.; Le, Z.; Li, Z.; Adesina, A. Adsorption of U(VI) onto the carboxymethylated chitosan/Na-bentonite membranes: Kinetic, isothermic and thermodynamic studies. J. Radioanal. Nucl. Chem. 2018, 317, 1377–1385. [Google Scholar] [CrossRef]
- Zhao, F.; Sillanpää, M. Chapter 3—Cross-linked chitosan and β-cyclodextrin as functional adsorbents in water treatment. In Advanced Water Treatment; Sillanpää, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–264. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, H.; Li, H.; Zhao, C.; Zhao, R.; Li, S. Highly selective uranium adsorption on 2-phosphonobutane-1,2,4-tricarboxylic acid-decorated chitosan-coated magnetic silica nanoparticles. Chem. Eng. J. 2020, 388, 124349. [Google Scholar] [CrossRef]
- Yu, S.-L.; Dai, Y.; Cao, X.-H.; Zhang, Z.-B.; Liu, Y.-h.; Ma, H.-J.; Xiao, S.-J.; Lai, Z.-J.; Chen, H.-J.; Zheng, Z.-Y.; et al. Adsorption of uranium(VI) from aqueous solution using a novel magnetic hydrothermal cross-linking chitosan. J. Radioanal. Nucl. Chem. 2016, 310, 651–660. [Google Scholar] [CrossRef]
- Yuvaraja, G.; Su, M.; Chen, D.-Y.; Pang, Y.; Kong, L.-J.; Subbaiah, M.V.; Wen, J.-C.; Reddy, G.M. Impregnation of magnetic—Momordica charantia leaf powder into chitosan for the removal of U(VI) from aqueous and polluted wastewater. Int. J. Biol. Macromol. 2020, 149, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Cheng, R.; Kang, M.; Wang, J. Kinetic and equilibrium of U(Ⅵ) adsorption onto magnetic amidoxime-functionalized chitosan beads. J. Clean. Prod. 2018, 188, 655–661. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Hamza, M.F.; Guibal, E. Effect of agitation mode (mechanical, ultrasound and microwave) on uranium sorption using amine- and dithizone-functionalized magnetic chitosan hybrid materials. Chem. Eng. J. 2021, 411, 128553. [Google Scholar] [CrossRef]
- Basu, H.; Saha, S.; Pimple, M.V.; Singhal, R.K. Novel hybrid material humic acid impregnated magnetic chitosan nano particles for decontamination of uranium from aquatic environment. J. Environ. Chem. Eng. 2019, 7, 103110. [Google Scholar] [CrossRef]
- Mahfouz, M.G.; Galhoum, A.A.; Gomaa, N.A.; Abdel-Rehem, S.S.; Atia, A.A.; Vincent, T.; Guibal, E. Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chem. Eng. J. 2015, 262, 198–209. [Google Scholar] [CrossRef]
- Hamza, M.F.; Roux, J.-C.; Guibal, E. Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chem. Eng. J. 2018, 344, 124–137. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, L.; Tang, X.; Le, Z.; Liu, Z.; Huang, G. In situ formed magnetic chitosan nanoparticles functionalized with polyethylenimine for effective U(VI) sorption. J. Radioanal. Nucl. Chem. 2020, 325, 595–604. [Google Scholar] [CrossRef]
- Tolba, A.A. Evaluation of uranium adsorption using magnetic-polyamine chitosan from sulfate leach liquor of sela ore material, South Eastern Desert, Egypt. Egypt. J. Chem. 2020, 63, 5219–5238. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Benettayeb, A.; Wang, X.; Guibal, E. Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative. J. Mater. Sci. 2020, 55, 4193–4212. [Google Scholar] [CrossRef]
- Guo, X.; Chen, R.; Liu, Q.; Liu, J.; Zhang, H.; Yu, J.; Li, R.; Zhang, M.; Wang, J. Superhydrophilic phosphate and amide functionalized magnetic adsorbent: A new combination of anti-biofouling and uranium extraction from seawater. Environ. Sci. Nano 2018, 5, 2346–2356. [Google Scholar] [CrossRef]
- Bhatti, A.A.; Oguz, M.; Yilmaz, M. One-pot synthesis of Fe3O4@Chitosan-pSDCalix hybrid nanomaterial for the detection and removal of Hg2+ ion from aqueous media. Appl. Surf. Sci. 2018, 434, 1217–1223. [Google Scholar] [CrossRef]
- Nacer, F. Comparative study of mercury(II) species removal onto naked and modified magnetic chitosan flakes coated ethylenediaminetetraacetic-disodium: Kinetic and thermodynamic modeling. Environ. Sci. Pollut. Res. 2018, 25, 24923–24938. [Google Scholar] [CrossRef]
- Lapo, B.; Demey, H.; Zapata, J.; Romero, C.; Sastre, A.M. Sorption of Hg(II) and Pb(II) Ions on Chitosan-Iron(III) from Aqueous Solutions: Single and Binary Systems. Polymers 2018, 10, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morsi, R.E.; Al-Sabagh, A.M.; Moustafa, Y.M.; ElKholy, S.G.; Sayed, M.S. Polythiophene modified chitosan/magnetite nanocomposites for heavy metals and selective mercury removal. Egypt. J. Pet. 2018, 27, 1077–1085. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, Y.; Zheng, Y.; Jiang, J.; Yang, C.; Wang, J.; Hu, J. New network polymer functionalized magnetic-mesoporous nanoparticle for rapid adsorption of Hg(II) and sequential efficient reutilization as a catalyst. Sep. Purif. Technol. 2021, 259, 118112. [Google Scholar] [CrossRef]
- Nemati, Y.; Zahedi, P.; Baghdadi, M.; Ramezani, S. Microfluidics combined with ionic gelation method for production of nanoparticles based on thiol-functionalized chitosan to adsorb Hg (II) from aqueous solutions. J. Environ. Manag. 2019, 238, 166–177. [Google Scholar] [CrossRef]
- Hou, C.; Zhao, D.; Zhang, S.; Wang, Y. Highly selective adsorption of Hg(II) by the monodisperse magnetic functional chitosan nano-biosorbent. Colloid Polym. Sci. 2018, 296, 547–555. [Google Scholar] [CrossRef]
- Tao, X.; Li, K.; Yan, H.; Yang, H.; Li, A. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres. Environ. Pollut. 2016, 209, 21–29. [Google Scholar] [CrossRef]
- Sadrolhosseini, A.R.; Naseri, M.; Rashid, S.A. Polypyrrole-chitosan/nickel-ferrite nanoparticle composite layer for detecting heavy metal ions using surface plasmon resonance technique. Opt. Laser Technol. 2017, 93, 216–223. [Google Scholar] [CrossRef]
- Ramasamy, D.L.; Puhakka, V.; Iftekhar, S.; Wojtuś, A.; Repo, E.; ben hammouda, S.; Iakovleva, E.; Sillanpää, M. N-and O-ligand doped mesoporous silica-chitosan hybrid beads for the efficient, sustainable and selective recovery of rare earth elements (REE) from acid mine drainage (AMD): Understanding the significance of physical modification and conditioning of the polymer. J. Hazard. Mater. 2018, 348, 84–91. [Google Scholar] [CrossRef]
- Rajabi, N.; Masrournia, M.; Abedi, M. Measuring and Pre-concentration of Lanthanum Using Fe3O4@Chitosan Nanocomposite with Solid-phase Microextraction for ICP-OES Determination. Arab. J. Sci. Eng. 2019, 45, 121–129. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, L.; Wang, L.; Zhu, B.; Fan, L. Adsorption of lanthanum by magnetic alginate-chitosan gel beads. J. Chem. Technol. Biotechnol. 2011, 86, 345–352. [Google Scholar] [CrossRef]
- Durán, S.V.; Lapo, B.; Meneses, M.; Sastre, A.M. Recovery of Neodymium (III) from Aqueous Phase by Chitosan-Manganese-Ferrite Magnetic Beads. Nanomaterials 2020, 10, 1204. [Google Scholar] [CrossRef]
- Pylypchuk, I.; Kołodyńska, D.; Kozioł, M.; Gorbyk, P. Gd-DTPA Adsorption on Chitosan/Magnetite Nanocomposites. Nanoscale Res. Lett. 2016, 11, 168. [Google Scholar] [CrossRef] [Green Version]
- Javadian, H.; Ruiz, M.; Saleh, T.A.; Sastre, A.M. Ca-alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 magnetic bionanocomposite: Synthesis, characterization and application for single adsorption of Nd+3, Tb+3, and Dy+3 rare earth elements from aqueous media. J. Mol. Liq. 2020, 306, 112760. [Google Scholar] [CrossRef]
- Javadian, H.; Ruiz, M.; Sastre, A.M. Response surface methodology based on central composite design for simultaneous adsorption of rare earth elements using nanoporous calcium alginate/carboxymethyl chitosan microbiocomposite powder containing Ni0.2Zn0.2Fe2.6O4 magnetic nanoparticles: Batch and column studies. Int. J. Biol. Macromol. 2020, 154, 937–953. [Google Scholar] [CrossRef] [PubMed]
- Javadian, H.; Ruiz, M.; Taghavi, M.; Sastre, A.M. Synthesis of magnetic CMC bionanocomposite containing a novel biodegradable nanoporous polyamide selectively synthesized in ionic liquid as green media: Investigation on Nd+3, Tb+3, and Dy+3 rare earth elements adsorption. J. Mol. Liq. 2020, 308, 113017. [Google Scholar] [CrossRef]
- Liu, E.; Zheng, X.; Xu, X.; Zhang, F.; Liu, E.; Wang, Y.; Li, C.; Yan, Y. Preparation of diethylenetriamine-modified magnetic chitosan nanoparticles for adsorption of rare-earth metal ions. New J. Chem. 2017, 41, 7739–7750. [Google Scholar] [CrossRef]
- Pylypchuk, I.; Kołodyńska, D.; Gorbyk, P. Gd(III) Adsorption on the Dtpa-Functionalized Chitosan/Magnetite Nanocomposites. Sep. Sci. Technol. 2017, 53, 1006–1016. [Google Scholar] [CrossRef]
- Abd El-Magied, M.O.; Galhoum, A.A.; Atia, A.A.; Tolba, A.A.; Maize, M.S.; Vincent, T.; Guibal, E. Cellulose and chitosan derivatives for enhanced sorption of erbium(III). Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 580–593. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Matis, K.A. Nanoadsorbents for pollutants removal: A review. J. Mol. Liq. 2015, 203, 159–168. [Google Scholar] [CrossRef]
- Hamza, M.F.; Ahmed, F.Y.; El-Aassy, I.; Fouda, A.; Guibal, E. Groundwater Purification in a Polymetallic Mining Area (SW Sinai, Egypt) Using Functionalized Magnetic Chitosan Particles. Water Air Soil Pollut. 2018, 229, 360. [Google Scholar] [CrossRef]
Isotherm | Non-Linear Form |
---|---|
Langmuir | |
Freundlich | |
Langmuir-Freundlich | |
Dubinin-Radushkevich | |
Tempkin | |
Flory-Huggins | |
Hill | |
Redlich-Peterson | |
Sips | |
Toth | |
Koble-Corrigan | |
Khan | |
Radke-Prausnitz | |
BET | |
FHH | |
MET |
Isotherm | Equation Form |
---|---|
Pseudo-first order (non-linear) | |
Pseudo-first order (linear) | |
Pseudo-second order (non-linear) | |
Pseudo-second order (linear) | |
Elovich | |
Intraparticle diffusion |
Sorbent | pH | Model Pollutant | Isotherms | Kinetics | Qmax (mg/g) | References |
---|---|---|---|---|---|---|
Hydrothermal cross-linking CS-Fe3O4 (HCC-Fe3O4) | 7 | U(VI) | (L), F | PFO, (PSO) | 263.1 | [10] |
TPP-crosslinked CS-Fe3O4 | 4 | U(VI) | (L), F | Not presented | 169.5 | [1] |
CS- Fe3O4 cross-linked with epichlorohydrin followed by grafting of triethylenetetramine | 4 | U(VI) | Not presented | Not presented | 158.43 | [18] |
CS- Fe3O4 microparticles are functionalized by grafting a new hydrazide | 5 | U(VI) | L | (PFO), PSO | 368.94 | [19] |
Glycine-grafted CS- Fe3O4 (HGly) | ~6 | U(VI) | [42] | |||
Μagnetic-Momordica charantia leaf powder impregnated into chitosan (m-MCLPICS) | 5 | U(VI) | (L), F, D-R | PFO, (PSO) | 250.7 | [11] |
2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA)-decorated chitosan-coated magnetic silica nanoparticle (CoFe2O4@SiO2@CS-PBTCA) | 4 | U(VI) | (L), F | PFO, (PSO), I-PD | 105.26 | [9] |
Polyethylenimine-functionalized magnetic chitosan nanoparticles (MCN-PEI) | 5 | U(VI) | (L), F | PFO, (PSO) | 134.6 | [17] |
Magnetic amidoxime functional chitosan (MAO-chitosan) | 6 | U(VI) | (L), F, T | PFO, (PSO), ELV, I-PD | 117.65 | [12] |
Humic acid modified magnetic chitosan nano particles (HA-MCNP) | 5–7 | U(VI) | (L), F | PFO, (PSO) | 47.9 | [14] |
Phosphate- and amide-functionalized magnetic CS-carboxymethylcellulose composite (FCCP) | 8 | U(VI) | (L), F, D-R | PFO, (PSO), I-PD | 625 | [20] |
Epichlorohydrin-activated magnetic chitosan micro-particles (EPI-MG-CH) | 4 | U(VI) | (L), F, S | PFO, (PSO) | 357 | [16] |
Magnetic nano-based particles of diethylenetriamine-functionalized CS | 3.6 | U(VI) | (L), F, D-R | PFO, (PSO), I-PD | 177.93 | [15] |
Magnetic-GMA-chitosan, under mechanical agitation (210 rpm) | 2.7 | U(VI) | (L), F, (S) | Not presented | 185.66 | [13] |
R-amine, under mechanical agitation (210 rpm) | 5.7 | U(VI) | L, F, (S) | (PFO), PSO, I-PD | 557 | [13] |
R-Dithizone, under mechanical agitation (210 rpm) | 5.7 | U(VI) | L, F, (S) | PFO, PSO, IPD | 423.7 | [13] |
R-Amine, under ultrasonic treatment (80 kHz) | 5.7 | U(VI) | L, F, (S) | PFO, (PSO), IPD | 559.4 | [13] |
R-Dithizone, under ultrasonic treatment (80 kHz) | 5.7 | U(VI) | L, F, (S) | PFO, (PSO), IPD | 583.2 | [13] |
R-Amine, under microwave treatment (2.45 GHz) | 5.7 | U(VI) | (L), F, (S) | PFO, (PSO), IPD | 428.5 | [13] |
R-Dithizone, under microwave treatment (2.45 GHz) | 5.7 | U(VI) | L, F, (S) | PFO, (PSO), IPD | 203 | [13] |
Isotherm | Parameters | Values |
---|---|---|
Langmuir | Qmax,cal (mg/g) | 250.7 |
KL (L/mg) | 0.036 | |
R2 | 0.9923 | |
χ2 | 34.5 | |
Freundlich | KF (mg/g) | 52.6 |
n | 3.747 | |
R2 | 0.9752 | |
χ2 | 107.6 | |
Dubinin-Radushkevich | Qmax,cal (mg/g) | 216.1 |
K | 0.0271 | |
R2 | 0.5736 | |
χ2 | 816.5 |
Adsorbent | CU(VI) | PFO | PSO | |||||
---|---|---|---|---|---|---|---|---|
qe,exp (mg/g) | qe,cal (mg/g) | k1 (L/min) | R2 | qe,cal (mg/g) | k2 (g/mg min) | R2 | ||
m-MCLPICS | 20 | 60.2 | 51.2 | 0.1183 | 0.9784 | 59.06 | 0.0035 | 0.9967 |
40 | 79.1 | 68.7 | 0.1127 | 0.9714 | 79.8 | 0.0026 | 0.9949 | |
60 | 120.4 | 101.1 | 0.1134 | 0.9874 | 118.9 | 0.0016 | 0.9983 | |
80 | 151.4 | 140.1 | 0.1183 | 0.9795 | 149.5 | 0.0014 | 0.9956 |
Sorbent | pH | Isotherms | Kinetics | Qmax (mg/g) | Ref. |
---|---|---|---|---|---|
Magnetic chitosan flakes-cross-linking EDTA-Na2 (MCFs-EDTA-Na2) | 4.7 | (L), F | PFO, (PSO), I-PD, ELV | 495 | [22] |
Naked magnetic chitosan flakes coated Fe3O4 micro-particles (NMCFs) | 4.6 | (L), F | PFO, (PSO), I-PD, ELV | 454 | [22] |
Thiol-functionalized CS NPs | 5.25 | L, F, T, D-R, (R-P), (R-P), (UT) | 1126 | [26] | |
Magnetic network polymer composite (MCTP) | 3.5 | (L), F | PFO, (PSO), I-PD | 506.39 | [25] |
Chitosan/magnetite nanocomposite (M.Cs.NC.) | 7 | L, (F), T, D-R | FO, SO, PFO, (PSO) | 125 | [24] |
Chitosan and p-sulfonato dansyl calix(4) arene composite (Fe3O4@Chitosan-pSDCalix) | (L), F | 86.65 | [21] | ||
Chitosan-Iron(III) beads | 4.5–5.0 | (L), F, S | PFO, (PSO) | 361.1 | [23] |
AT-MCS nano-biosorbent | 7 | (L), F | PFO, (PSO), I-PD | 245.6 | [27] |
Polypyrrole-chitosan/nickel-ferrite nanoparticle composite layer (PPy-Chi/NiFe2O4 composite layer) | 7.52–7.58 | (L) | PFO | [29] | |
Glutamine modified chitosan magnetic composite microspheres (CS-Gln-MCM) | 5 | (L), F | PFO, (PSO), I-PD | 199.23 | [28] |
Sorbent | pH | Model Pollutant | Isotherms | Kinetics | Qmax (mg/g) | References |
---|---|---|---|---|---|---|
Fe3O4@ Chitosan nanocomposite | 3 | La(III) | 105 | [31] | ||
Magnetic alginate-chitosan gel beads | 2.8 | La(III) | (L), F, D-R | PFO, (PSO) | 97.1 | [32] |
Chitosan-manganese-ferrite magnetic beads | 4 | Nd(III) | L, F, S | PFO, PSO, ELV, I-PD | 44.29 | [33] |
Magnetic calcium alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 (CA/CMC/Ni0.2Zn0.2Fe2.6O4) | 5.5 | Nd(III) | (L), F | PFO, (PSO), I-PD | 73.37 | [35] |
Carboxymethyl chitosan/poly(pyrimidine-thiophene amide)/Ni0.2Zn0.2Fe2.6O4 (CMC/P(PTA)/Ni0.2Zn0.2Fe2.6O4) | 5.5 | Nd(III) | L, (F) | PFO, (PSO), (I-PD) | 39.82 | [37] |
Fe3O4-octadecyltriethoxysilane (C18)-chitosan diethylenetriamine (DETA) composite | 7 | Nd(III) | (L), F, D-R | PFO, (PSO), I-PD | 27.1 | [38] |
Calcium alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 | 5.5 | Nd(III) | L, (F) | PFO, (PSO), I-PD | 22.70 | [36] |
Diethylenetriaminepentaacetic acid (DTPA)-functionalized chitosan/magnetite (Fe3O4/NH2) nanocomposite | 2-6 | Gd(III) | (L), F | 94.21 | [39] | |
Chitosan/magnetite (Fe3O4/NH2) nanocomposite | 7.23 | Gd(III) | L, (F) | 93.44 | [34] | |
Magnetic calcium alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 (CA/CMC/Ni0.2Zn0.2Fe2.6O4) | 5.5 | Dy(III) | L, (F) | PFO, (PSO), I-PD | 114.74 | [35] |
Carboxymethyl chitosan/poly(pyrimidine-thiophene-amide)/Ni0.2Zn0.2Fe2.6O4 (CMC/P(PTA)/Ni0.2Zn0.2Fe2.6O4) | 5.5 | Dy(III) | L, (F) | PFO, (PSO), (I-PD) | 48.23 | [37] |
Fe3O4-octadecyltriethoxysilane (C18)-chitosan diethylenetriamine (DETA) composite | 7 | Dy(III) | (L), F, D-R | PFO, (PSO), I-PD | 28.3 | [38] |
Calcium alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 | 5.5 | Dy(III) | L, (F) | PFO, (PSO), I-PD | 25.54 | [36] |
PCM-CS (Refers PCM-Chit) | 5 | Er(III) | (L), F | PFO, (PSO) | 124.95 | [40] |
Fe3O4-octadecyltriethoxysilane (C18)-chitosan diethylenetriamine (DETA) composite | 7 | Er(III) | (L), F, D-R | PFO, (PSO), I-PD | 30.6 | [38] |
Magnetic calcium alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 (CA/CMC/Ni0.2Zn0.2Fe2.6O4) | 5.5 | Tb(III) | L, (F) | PFO, (PSO), I-PD | 101.61 | [35] |
Carboxymethyl chitosan/poly(pyrimidine-thiophene-amide)/Ni0.2Zn0.2Fe2.6O4 (CMC/P(PTA)/Ni0.2Zn0.2Fe2.6O4) | 5.5 | Tb(III) | L, (F) | PFO, (PSO), (I-PD) | 50.32 | [37] |
Calcium alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 | 5.5 | Tb(III) | L, (F) | PFO, (PSO), I-PD | 24.00 | [36] |
Magnetic chitosan microparticles grafted with malonitrile and amidoximated | 5 | Eu(III) | (L), F, S | PFO, (PSO) | 375.4 | [16] |
Models | Parameters | Dy(III) | Tb(III) | Nd(III) |
---|---|---|---|---|
Langmuir | b (L/mg) | 0.546 | 0.8 | 1.075 |
Qmax,cal (mg/g) | 100.20 | 88.61 | 73.37 | |
RL | 0.006 | 0.004 | 0.003 | |
R2 | 0.8212 | 0.7163 | 0.9703 | |
χ2 | 144.07 | 157.16 | 6.04 | |
Freundlich | k (mg1−1/n L1/n/g) | 46.65 | 46.31 | 46.80 |
n | 5.93 | 6.83 | 10.31 | |
R2 | 0.9751 | 0.9905 | 0.8364 | |
χ2 | 20 | 5.23 | 33.32 |
Models | Parameters | Dy(III) | Tb(III) | Nd(III) |
---|---|---|---|---|
Langmuir | b (L/mg) | 6.391 | 1.51 | 3.28 |
Qmax,cal (mg/g) | 43.76 | 42.87 | 36.59 | |
RL | 0.0005 | 0.0022 | 0.001 | |
R2 | 0.5771 | 0.5398 | 0.5679 | |
χ2 | 47.31 | 43.21 | 16.7 | |
Freundlich | k (mg1−1/n L1/n/g) | 26.13 | 23.7 | 24.23 |
1/n | 0.12 | 0.13 | 0.09 | |
R2 | 0.9632 | 0.9482 | 0.9709 | |
χ2 | 4.12 | 4.86 | 1.12 |
Models | Parameters | Dy(III) | Tb(III) | Nd(III) |
---|---|---|---|---|
PFO | k1 (1/min) | 0.269 | 0.271 | 0.279 |
qe,cal. (mg/g) | 46.54 | 46.05 | 45.91 | |
R2 | 0.9099 | 0.8712 | 0.8506 | |
χ2 | 5.34 | 7.29 | 7.91 | |
PSO | κ2 (g/mg min) | 0.00899 | 0.00916 | 0.00967 |
qe,cal. (mg/g) | 49.72 | 49.21 | 48.95 | |
h (mg/g min) | 22.22 | 22.18 | 23.17 | |
R2 | 0.9956 | 0.9893 | 0.9831 | |
χ2 | 0.26 | 0.60 | 0.89 | |
I-PD | ki (1/min) | 11.76 | 11.73 | 11.33 |
R2 | 0.8723 | 0.9091 | 0.9063 | |
χ2 | 7.57 | 5.14 | 4.96 |
Models | Parameters | Dy(III) | Tb(III) | Nd(III) |
---|---|---|---|---|
PFO | k1 (1/min) | 0.126 | 0.132 | 0.116 |
qe,cal. (mg/g) | 32.71 | 32.29 | 31.15 | |
R2 | 0.8803 | 0.8538 | 0.8831 | |
χ2 | 7.52 | 8.77 | 7.24 | |
PSO | k2 (g/mg min) | 0.0047 | 0.0049 | 0.0043 |
qe,cal. (mg/g) | 36.27 | 35.80 | 34.85 | |
h (mg/g min) | 6.18 | 6.28 | 5.22 | |
R2 | 0.9686 | 0.9564 | 0.9629 | |
χ2 | 1.97 | 2.61 | 2.3 | |
I-PD | ki (1/min) | 11.2 | 11.02 | 11.16 |
R2 | 0.9676 | 0.9782 | 0.9737 | |
χ2 | 2.03 | 1.31 | 1.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michailidou, G.; Koumentakou, I.; Liakos, E.V.; Lazaridou, M.; Lambropoulou, D.A.; Bikiaris, D.N.; Kyzas, G.Z. Adsorption of Uranium, Mercury, and Rare Earth Elements from Aqueous Solutions onto Magnetic Chitosan Adsorbents: A Review. Polymers 2021, 13, 3137. https://doi.org/10.3390/polym13183137
Michailidou G, Koumentakou I, Liakos EV, Lazaridou M, Lambropoulou DA, Bikiaris DN, Kyzas GZ. Adsorption of Uranium, Mercury, and Rare Earth Elements from Aqueous Solutions onto Magnetic Chitosan Adsorbents: A Review. Polymers. 2021; 13(18):3137. https://doi.org/10.3390/polym13183137
Chicago/Turabian StyleMichailidou, Georgia, Ioanna Koumentakou, Efstathios V. Liakos, Maria Lazaridou, Dimitra A. Lambropoulou, Dimitrios N. Bikiaris, and George Z. Kyzas. 2021. "Adsorption of Uranium, Mercury, and Rare Earth Elements from Aqueous Solutions onto Magnetic Chitosan Adsorbents: A Review" Polymers 13, no. 18: 3137. https://doi.org/10.3390/polym13183137