On the Derivation of Boundary Conditions for Continuum Dislocation Dynamics
Abstract
:1. Introduction
2. Preliminaries
2.1. Notation
2.2. Kinematics of Single Crystals and CDD
3. Principle of Virtual Power
3.1. Internal and External Expenditure of Power
3.2. Principle of Virtual Power
4. Constitutive Theory
4.1. Energy Imbalance
4.2. Dissipation Inequality
4.3. Surface Constitutive Theory
5. Discussion
Acknowledgments
Conflicts of Interest
Abbreviations
CDD | Continuum dislocation dynamics |
References
- Fleck, N.A.; Hutchinson, J.W. A phenomenological model for strain gradient effects in plasticity. J. Mech. Phys. Solids 1993, 41, 1825–1857. [Google Scholar] [CrossRef]
- Fleck, N.A.; Muller, G.M.; Ashby, M.F.; Hutchinson, J.W. Strain Gradient plasticity: Theory and Experiment. Acta Metall. Mater. 1994, 42, 475–487. [Google Scholar] [CrossRef]
- Acharya, A. A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Solids 2001, 49, 761–784. [Google Scholar] [CrossRef]
- Acharya, A. Driving forces and boundary conditions in continuum dislocation mechanics. Proc. R. Soc. Lond. A 2003, 459, 1343–1363. [Google Scholar] [CrossRef]
- Acharya, A.; Roy, A. Size effects and idealized dislocation microstructure at small scales: Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: Part I. J. Mech. Phys. Solids 2006, 54, 1687–1710. [Google Scholar] [CrossRef]
- Gurtin, M.E. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 2002, 50, 5–32. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Needleman, A. Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector. J. Mech. Phys. Solids 2005, 53, 1–31. [Google Scholar] [CrossRef]
- Groma, I.; Csikor, F.F.; Zaiser, M. Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 2003, 51, 1271–1281. [Google Scholar] [CrossRef]
- Yefimov, S.; Groma, I.; van der Giessen, E. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 2004, 52, 279–300. [Google Scholar] [CrossRef]
- Hochrainer, T.; Zaiser, M.; Gumbsch, P. A three-dimensional continuum theory of dislocations: Kinematics and mean field formulation. Philos. Mag. 2007, 87, 1261–1282. [Google Scholar] [CrossRef]
- Hochrainer, T. Multipole expansion of continuum dislocations dynamics in terms of alignment tensors. Philos. Mag. 2015, 95, 1321–1367. [Google Scholar] [CrossRef]
- Roters, F. A new concept for the calculation of the mobile dislocation density in constitutive models of strain hardening. Phy. Stat. Sol. 2003, 240, 68–74. [Google Scholar] [CrossRef]
- Arsenslis, A.; Parks, D.; Becker, R.; Bulatov, V. On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. J. Mech. Phys. Solids 2004, 52, 1213–1246. [Google Scholar] [CrossRef]
- Reuber, C.; Eisenlohr, P.; Roters, F.; Raabe, D. Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Mater. 2014, 71, 333–348. [Google Scholar] [CrossRef]
- Hochrainer, T. Thermodynamically consistent continuum dislocation dynamics. J. Mech. Phys. Solids 2016, 88, 12–22. [Google Scholar] [CrossRef]
- Zaiser, M. Local density approximation for the energy functional of three-dimensional dislocation systems. Phys. Rev. B 2015, 92, 174120. [Google Scholar] [CrossRef]
- Hochrainer, T.; Sandfeld, S.; Zaiser, M.; Gumbsch, P. Continuum dislocation dynamics: Towards a physically theory of plasticity. J. Mech. Phys. Solids 2014, 63, 167–178. [Google Scholar] [CrossRef]
- Monavari, M.; Zaiser, M.; Sandfeld, S. Comparison of closure approximations for continuous dislocation dynamics. MRS Proc. 2014, 1651. [Google Scholar] [CrossRef]
- Nye, J.F. Some geometrical relations in dislocated crystals. Acta Metall. 1953, 1, 153–162. [Google Scholar] [CrossRef]
- Kröner, E.; Rieder, G. Kontinuumstheorie der Versetzungen. Z. Phys. 1956, 145, 424–429. [Google Scholar] [CrossRef]
- Steinmann, P. On boundary potential energies in deformational and configurational mechanics. J. Mech. Phys. Solids 2008, 56, 772–800. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Hochrainer, T. Three-Dimensional Continuum Dislocation Dynamics Simulations of Dislocation Structure Evolution in Bending of a Micro-Beam. MRS Adv. 2016, 1, 1791–1796. [Google Scholar] [CrossRef]
- Martínez-Pañeda, E.; Niordson, C.F.; Bardella, L. A finite element framework for distortion gradient plasticity with applications to bending of thin foils. Int. J. Solids Struct. 2016, 96, 288–299. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hochrainer, T. On the Derivation of Boundary Conditions for Continuum Dislocation Dynamics. Crystals 2017, 7, 235. https://doi.org/10.3390/cryst7080235
Hochrainer T. On the Derivation of Boundary Conditions for Continuum Dislocation Dynamics. Crystals. 2017; 7(8):235. https://doi.org/10.3390/cryst7080235
Chicago/Turabian StyleHochrainer, Thomas. 2017. "On the Derivation of Boundary Conditions for Continuum Dislocation Dynamics" Crystals 7, no. 8: 235. https://doi.org/10.3390/cryst7080235
APA StyleHochrainer, T. (2017). On the Derivation of Boundary Conditions for Continuum Dislocation Dynamics. Crystals, 7(8), 235. https://doi.org/10.3390/cryst7080235