Next Article in Journal / Special Issue
Equivalence of Electron-Vibration Interaction and Charge-Induced Force Variations: A New O(1) Approach to an Old Problem
Previous Article in Journal
Synthesis and Crystal Structures of the Quaternary Zintl Phases RbNa8Ga3Pn6 (Pn = P, As) and Na10NbGaAs6
Previous Article in Special Issue
A New BEDT-TTF-Based Organic Charge Transfer Salt with a New Anionic Strong Acceptor, N,N'-Disulfo-1,4-benzoquinonediimine
Article Menu

Export Article

Open AccessArticle
Crystals 2012, 2(2), 224-235; doi:10.3390/cryst2020224

Properties of Mn2+ and Π-Electron Spin Systems Probed by 1H and 13C NMR in the Organic Conductor κ-(BETS)2Mn[N(CN)2]3

1
Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russia
2
Institute of Physical and Chemical Research (RIKEN), Hirosawa, Wako, Saitama 351-0198, Japan
3
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russia
*
Author to whom correspondence should be addressed.
Received: 7 March 2012 / Revised: 30 March 2012 / Accepted: 31 March 2012 / Published: 12 April 2012
(This article belongs to the Special Issue Molecular Conductors)
View Full-Text   |   Download PDF [942 KB, 13 April 2012; original version 12 April 2012]   |  

Abstract

Properties of the spin systems of the localized 3d Mn2+ ions and the conduction π electrons in quasi-two-dimensional organic conductor κ-(BETS)2Mn[N(CN)2]3 were accessed using 1H and 13C NMR in order to find their relation to the metal-insulator transition which occurs at ∼23 K. The transition of the system into the insulating state is shown to be followed by localization of the π spins into a long-range ordered staggered structure of AF type. In contrast, the 3d Mn2+ electron spin moments form a disordered tilted structure, which may signify their trend to AF order, frustrated geometrically by the triangular arrangement of Mn in the anion layer. This result suggests that the MI transition in κ-(BETS)2Mn[N(CN)2]3 is not the consequence of the interactions within the Mn2+ spins but due to the interactions within the π-electron system itself. Vice versa, it is more likelythat the disordered tilted structure of the Mn2+ spins is induced by the ordered π-spins via the π-d interaction. View Full-Text
Keywords: organic metals; pi-d interactions; spin order; antiferromagnetism; metal-insulator transition; NMR organic metals; pi-d interactions; spin order; antiferromagnetism; metal-insulator transition; NMR
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Vyaselev, O.M.; Kato, R.; Yamamoto, H.M.; Kobayashi, M.; Zorina, L.V.; Simonov, S.V.; Kushch, N.D.; Yagubskii, E.B. Properties of Mn2+ and Π-Electron Spin Systems Probed by 1H and 13C NMR in the Organic Conductor κ-(BETS)2Mn[N(CN)2]3. Crystals 2012, 2, 224-235.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Crystals EISSN 2073-4352 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top