Next Article in Journal
Unconventional Approaches Involving Cyclodextrin-Based, Self-Assembly-Driven Processes for the Conversion of Organic Substrates in Aqueous Biphasic Catalysis
Next Article in Special Issue
Immobilized Palladium Nanoparticles on Zirconium Carboxy-Aminophosphonates Nanosheets as an Efficient Recoverable Heterogeneous Catalyst for Suzuki–Miyaura and Heck Coupling
Previous Article in Journal
A Reusable Palladium/Cationic 2,2′-Bipyridyl System-Catalyzed Double Mizoroki-Heck Reaction in Water
Previous Article in Special Issue
Imidazoles-Intercalated α-Zirconium Phosphate as Latent Thermal Initiators in the Reaction of Glycidyl Phenyl Ether (GPE) and Hexahydro-4-Methylphthalic Anhydride (MHHPA)
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessFeature PaperArticle
Catalysts 2017, 7(6), 176; doi:10.3390/catal7060176

Zirconium Phosphate Heterostructures as Catalyst Support in Hydrodeoxygenation Reactions

Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
*
Authors to whom correspondence should be addressed.
Academic Editor: Monica Pica
Received: 30 April 2017 / Revised: 23 May 2017 / Accepted: 27 May 2017 / Published: 2 June 2017
(This article belongs to the Special Issue Zirconium Phosphate Catalysts)
View Full-Text   |   Download PDF [3949 KB, uploaded 5 June 2017]   |  

Abstract

A porous phosphate heterostructure (PPHs) formed by a layered zirconium(IV) phosphate expanded with silica galleries was prepared presenting a P/Zr molar ratio equal to 2 and a (Si + Zr)/P ratio equal to 3. This pillared zirconium phosphate heterostructure was used as a catalyst support for bi-functional catalysts based on noble metals (Pt or Pd) and molybdenum oxide containing a total metallic loading of 2 wt % and Pt(Pd)/Mo molar ratio equal to 1. The catalysts prepared were characterized by different experimental techniques and evaluated in the hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) as a model compound present in biomass derived bio-oil, at different reaction pressures. The catalyst characterization evidenced that a high dispersion of the active phase can be achieved by using these materials, as observed from transmission electron microscopy (TEM) characterization, where the presence of small particles in the nanometric scale is noticeable. Moreover, the textural and acidic properties of the phosphate heterostructure are barely affected by the incorporation of metals into its structure. Characterization results evidenced that the presented material is a good candidate to be used as a material support. In both cases, high conversions and high selectivities to deoxygenated compounds were achieved and the active phase played an important role. Thus, Pt/Mo presented a better hydrogenolysis capability, being more selective to O-free products; whereas, Pd/Mo showed a greater hydrogenation ability being more affected by changes in pressure conditions. View Full-Text
Keywords: hydrodeoxygenation (HDO); dibenzofuran; noble metals; molybdenum; pillared zirconium phosphate heterostructures hydrodeoxygenation (HDO); dibenzofuran; noble metals; molybdenum; pillared zirconium phosphate heterostructures
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Ballesteros-Plata, D.; Infantes-Molina, A.; Rodríguez-Aguado, E.; Braos-García, P.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E. Zirconium Phosphate Heterostructures as Catalyst Support in Hydrodeoxygenation Reactions. Catalysts 2017, 7, 176.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Catalysts EISSN 2073-4344 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top