Next Article in Journal
Effects of Catalyst Preparation on Hydrocarbon Product Distribution in Hydrocracking of the Fischer-Tropsch Product with Low Pt-Loaded Catalysts
Previous Article in Journal
Information-Driven Catalyst Design Based on High-Throughput Intrinsic Kinetics
Article Menu

Export Article

Open AccessArticle
Catalysts 2015, 5(4), 1969-1982; doi:10.3390/catal5041969

Two Carbonylations of Methyl Iodide and Trimethylamine to Acetic acid and N,N-Dimethylacetamide by Rhodium(I) Complex: Stability of Rhodium(I) Complex under Anhydrous Condition

Department of Nanopolymer Material Engineering, Pai Chai University, 155-40 Baejae-ro (Doma-Dong), Seo-Gu, Daejon 302-735, Korea
Academic Editor: Georgiy B. Shul'pin
Received: 13 October 2015 / Accepted: 2 November 2015 / Published: 19 November 2015
View Full-Text   |   Download PDF [170 KB, uploaded 19 November 2015]   |  

Abstract

Rhodium(I)-complex [Rh(CO)2I2] (1) catalyzed two carbonylations of methyl iodide and trimethylamine in NMP (1-methyl-2-pyrolidone) to acetic acid and DMAC (N,N-dimethylacetamide) in the presence of calcium oxide and water. The carbonylation of trimethylamine continued during the carbonylation and consumption of methyl iodide. In total, 183.8 mmol of carbonylated products was produced while consuming 24.1 mmol methyl iodide via acetic acid formation. These results clearly indicated that there were two carbonylation routes of trimethylamine and methyl iodide and the carbonylation rate of trimethylamine was faster than that of methyl iodide. Rhodium(I)-complex [Rh(CO)2I2] (1) in the presence of trimethylamine was stable enough to be used 25 times with TON (Turnover Number) of 368 for DMAC and TON of 728 for trimethylamine. Inner-sphere reductive elimination in stepwise procedure was suggested for the formation of DMAC instead of acyl iodide intermediate under anhydrous condition. View Full-Text
Keywords: rhodium; carbonylation; trimethylamine; dimethylacetamide; methyl iodide; acetic acid; tetramethylammonium iodide; intramolecular; inner-sphere rhodium; carbonylation; trimethylamine; dimethylacetamide; methyl iodide; acetic acid; tetramethylammonium iodide; intramolecular; inner-sphere
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Hong, J.-H. Two Carbonylations of Methyl Iodide and Trimethylamine to Acetic acid and N,N-Dimethylacetamide by Rhodium(I) Complex: Stability of Rhodium(I) Complex under Anhydrous Condition. Catalysts 2015, 5, 1969-1982.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Catalysts EISSN 2073-4344 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top