Lindqvist versus Keggin-Type Polyoxometalates as Catalysts for Effective Desulfurization of Fuels
Abstract
:1. Introduction
2. Results
2.1. Catalysts Characterization
2.2. Desulfurization Studies
2.2.1. Reusing Homogeneous POMs
2.2.2. Influence of Lanthanide Nature
2.2.3. Comparison between Different POM Structures
2.2.4. Stability of Keggin- and Lindqvist-Type Polyoxometalates
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of Lanthanopolyoxometalates
3.2.1. Lindqvist-Type POM
3.2.2. Keggin-Type POM
3.3. Oxidative Desulfurization Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Yang, Z.; Li, S.; Jin, Q.; Zhao, J. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts. J. Ind. Eng. Chem. 2019, 82, 1–16. [Google Scholar] [CrossRef]
- Jiang, W.; Zhu, W.; Li, H.; Wang, X.; Yin, S.; Chang, Y.; Li, H. Temperature-responsive ionic liquid extraction and separation of the aromatic sulfur compounds. Fuel 2015, 140, 590–596. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Mehrvarz, E.; Taghipour, A. Polyoxometalate as an effective catalyst for the oxidative desulfurization of liquid fuels: A critical review. Rev. Chem. Eng. 2019, 36, 831–858. [Google Scholar] [CrossRef]
- Soleimani, M.; Bassi, A.; Margaritis, A. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol. Adv. 2007, 25, 570–596. [Google Scholar] [CrossRef] [PubMed]
- Cychosz, K.A.; Wong-Foy, A.G.; Matzger, A.J. Liquid Phase Adsorption by Microporous Coordination Polymers: Removal of Organosulfur Compounds. J. Am. Chem. Soc. 2008, 130, 6938–6939. [Google Scholar] [CrossRef] [PubMed]
- Julião, D.; Gomes, A.C.; Pillinger, M.; Lopes, A.D.; Valença, R.; Ribeiro, J.C.; Gonçalves, I.S.; Balula, S.S. Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvents. J. Mol. Liq. 2020, 309, 113093. [Google Scholar] [CrossRef]
- Mirante, F.; De Castro, B.; Granadeiro, C.M.; Balula, S.S. Solvent-Free Desulfurization System to Produce Low-Sulfur Diesel Using Hybrid Monovacant Keggin-Type Catalyst. Molecules 2020, 25, 4961. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Li, H.; Wei, Y.; Fu, Y.; Liao, W.; Zhu, L.; Chen, G.; Zhu, W.; Li, H. Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization. Appl. Catal. B Environ. 2020, 271, 118936. [Google Scholar] [CrossRef]
- Craven, M.; Xiao, D.; Kunstmann-Olsen, C.; Kozhevnikova, E.F.; Blanc, F.; Steiner, A.; Kozhevnikov, I.V. Oxidative desulfurization of diesel fuel catalyzed by polyoxometalate immobilized on phosphazene-functionalized silica. Appl. Catal. B Environ. 2018, 231, 82–91. [Google Scholar] [CrossRef]
- Ribeiro, S.O.; Julião, D.; Cunha-Silva, L.; Domingues, V.F.; Valença, R.; Ribeiro, J.C.; de Castro, B.; Balula, S.S. Catalytic oxidative/extractive desulfurization of model and untreated diesel using hybrid based zinc-substituted polyoxometalates. Fuel 2016, 166, 268–275. [Google Scholar] [CrossRef]
- Granadeiro, C.M.; de Castro, B.; Balula, S.S.; Cunha-Silva, L. Lanthanopolyoxometalates: From the structure of polyanions to the design of functional materials. Polyhedron 2013, 52, 10–24. [Google Scholar] [CrossRef]
- Ribeiro, S.; Barbosa, A.; Gomes, A.; Pillinger, M.; Gonçalves, I.; Cunha-Silva, L.; Balula, S. Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Process. Technol. 2013, 116, 350–357. [Google Scholar] [CrossRef]
- Granadeiro, C.M.; Barbosa, A.D.S.; Ribeiro, S.; Santos, I.C.M.S.; de Castro, B.; Cunha-Silva, L.; Balula, S.S. Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr). Catal. Sci. Technol. 2014, 4, 1416–1425. [Google Scholar] [CrossRef]
- Mirante, F.; Dias, L.; Silva, M.; Ribeiro, S.O.; Corvo, M.; de Castro, B.; Granadeiro, C.; Balula, S. Efficient heterogeneous polyoxometalate-hybrid catalysts for the oxidative desulfurization of fuels. Catal. Commun. 2018, 104, 1–8. [Google Scholar] [CrossRef]
- Granadeiro, C.M.; Nogueira, L.S.; Julião, D.; Mirante, F.; Ananias, D.; Balula, S.S.; Cunha-Silva, L. Influence of a porous MOF support on the catalytic performance of Eu-polyoxometalate based materials: Desulfurization of a model diesel. Catal. Sci. Technol. 2016, 6, 1515–1522. [Google Scholar] [CrossRef]
- Mirante, F.; Alves, A.C.; Julião, D.; Almeida, P.L.; Gago, S.; Valença, R.; Ribeiro, J.C.; de Castro, B.; Granadeiro, C.M.; Balula, S.S. Large-pore silica spheres as support for samarium-coordinated undecamolybdophosphate: Oxidative desulfurization of diesels. Fuel 2020, 259, 116213. [Google Scholar] [CrossRef]
- Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Co-ord. Chem. Rev. 2011, 255, 2358–2370. [Google Scholar] [CrossRef]
- Wu, H.; Yan, B.; Li, H.; Singh, V.; Ma, P.; Niu, J.; Wang, J. Enhanced Photostability Luminescent Properties of Er3+-Doped Near-White-Emitting DyxEr(1–x)-POM Derivatives. Inorg. Chem. 2018, 57, 7665–7675. [Google Scholar] [CrossRef]
- Sato, R.; Suzuki, K.; Sugawa, M.; Mizuno, N. Heterodinuclear Lanthanoid-Containing Polyoxometalates: Stepwise Synthesis and Single-Molecule Magnet Behavior. Chem. A Eur. J. 2013, 19, 12982–12990. [Google Scholar] [CrossRef]
- Yan, B.; Wu, H.; Ma, P.; Niu, J.; Wang, J. Recent advances in rare earth co-doped luminescent tungsten oxygen complexes. Inorg. Chem. Front. 2021, 8, 4158–4176. [Google Scholar] [CrossRef]
- Viravaux, C.; Oms, O.; Dolbecq, A.; Nassar, E.; Busson, L.; Mellot-Draznieks, C.; Dessapt, R.; Serier-Brault, H.; Mialane, P. Temperature sensors based on europium polyoxometalate and mesoporous terbium metal–organic framework. J. Mater. Chem. C 2021, 9, 8323–8328. [Google Scholar] [CrossRef]
- Fateixa, S.; Carvalho, R.S.; Daniel-Da-Silva, A.L.; Nogueira, H.I.S.; Trindade, T. Luminescent Carrageenan Hydrogels Containing Lanthanopolyoxometalates. Eur. J. Inorg. Chem. 2017, 2017, 4976–4981. [Google Scholar] [CrossRef]
- Lotfian, N.; Heravi, M.M.; Mirzaei, M.; Daraie, M. Investigation of the uncommon basic properties of [Ln(W5O18)2]9– (Ln = La, Ce, Nd, Gd, Tb) by changing central lanthanoids in the syntheses of pyrazolopyranopyrimidines. J. Mol. Struct. 2019, 1199, 126953. [Google Scholar] [CrossRef]
- Ribeiro, S.O.; Nogueira, L.S.; Gago, S.; Almeida, P.L.; Corvo, M.C.; de Castro, B.; Granadeiro, C.M.; Balula, S.S. Desulfurization process conciliating heterogeneous oxidation and liquid extraction: Organic solvent or centrifugation/water? Appl. Catal. A Gen. 2017, 542, 359–367. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Song, Y. Directional Self-Assembly of Exfoliated Layered Europium Hydroxide Nanosheets and Na 9 EuW 10 O 36 ·32H 2 O for Application in Desulfurization. Eur. J. Inorg. Chem. 2014, 2014, 2779–2786. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Song, Y.-F. An efficient heterogeneous catalyst based on highly dispersed Na7H2LaW10O36·32H2O nanoparticles on mesoporous silica for deep desulfurization. Appl. Catal. A Gen. 2013, 466, 307–314. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, S.; Ji, Y.; Song, Y.-F. Deep Desulfurization by Amphiphilic Lanthanide-Containing Polyoxometalates in Ionic-Liquid Emulsion Systems under Mild Conditions. Chem. A Eur. J. 2012, 19, 709–715. [Google Scholar] [CrossRef]
- Neves, C.S.; Granadeiro, C.M.; Cunha-Silva, L.; Ananias, D.; Gago, S.; Feio, G.; Carvalho, P.A.; Eaton, P.; Balula, S.S.; Pereira, E. Europium Polyoxometalates Encapsulated in Silica Nanoparticles—Characterization and Photoluminescence Studies. Eur. J. Inorg. Chem. 2013, 2013, 2877–2886. [Google Scholar] [CrossRef]
- Sousa, F.L.; Pillinger, M.; Sá Ferreira, R.A.; Granadeiro, C.M.; Cavaleiro, A.M.V.; Rocha, J.; Carlos, L.D.; Trindade, T.; Nogueira, H.I.S. Luminescent Polyoxotungstoeuropate Anion-Pillared Layered Double Hydroxides. Eur. J. Inorg. Chem. 2006, 2006, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Shiozaki, R.; Inagaki, A.; Ozaki, A.; Kominami, H.; Yamaguchi, S.; Ichihara, J.; Kera, Y. Catalytic behavior of a series of lanthanide decatungstates [Ln(III)W10O369; Ln: LaYb] for H2O2-oxidations of alcohols and olefins. Some chemical effects of the 4fn-electron in the lanthanide(III) ion on the catalyses. J. Alloy Compd. 1997, 261, 132–139. [Google Scholar] [CrossRef]
- Silva, D.; Viana, A.; Mirante, F.; de Castro, B.; Cunha-Silva, L.; Balula, S. Removing Simultaneously Sulfur and Nitrogen from Fuel under a Sustainable Oxidative Catalytic System. Sustain. Chem. 2021, 2, 382–391. [Google Scholar] [CrossRef]
- Nogueira, L.S.; Ribeiro, S.; Granadeiro, C.M.; Pereira, E.; Feio, G.; Cunha-Silva, L.; Balula, S.S. Novel polyoxometalate silica nano-sized spheres: Efficient catalysts for olefin oxidation and the deep desulfurization process. Dalton Trans. 2014, 43, 9518–9528. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, S.; Chen, W.; Wang, M.; Song, Y.-F. Highly Efficient Extraction and Oxidative Desulfurization System Using Na7H2LaW10O36⋅32 H2O in [bmim]BF4 at Room Temperature. Chem. A Eur. J. 2012, 18, 4775–4781. [Google Scholar] [CrossRef] [PubMed]
- Granadeiro, C.M.; Ferreira, R.A.S.; Soares-Santos, P.C.R.; Carlos, L.D.; Trindade, T.; Nogueira, H.I.S. Lanthanopolyoxotungstates in silica nanoparticles: Multi-wavelength photoluminescent core/shell materials. J. Mater. Chem. 2010, 20, 3313–3318. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, M.A.; Afshari, P.; Aghmasheh, M. Deep catalytic oxidative desulfurization process catalyzed by TBA-PWFe@NiO@BNT composite material as an efficient and recyclable phase-transfer nanocatalyst. Mater. Chem. Phys. 2021, 267, 124662. [Google Scholar] [CrossRef]
- Granadeiro, C.M.; Ribeiro, S.O.; Kaczmarek, A.M.; Cunha-Silva, L.; Almeida, P.L.; Gago, S.; Van Deun, R.; de Castro, B.; Balula, S.S. A novel red emitting material based on polyoxometalate@periodic mesoporous organosilica. Microporous Mesoporous Mater. 2016, 234, 248–256. [Google Scholar] [CrossRef]
- Ali Rezvani, M.; Shaterian, M.; Aghbolagh, Z.S.; Akbarzadeh, F. Synthesis and Characterization of New Inorganic-Organic Hybrid Nanocomposite PMo11Cu@MgCu2O4@CS as an Efficient Heterogeneous Nanocatalyst for ODS of Real Fuel. ChemistrySelect 2019, 4, 6370–6376. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Granadeiro, C.M.; Ferreira, R.A.S.; Soares-Santos, P.C.; Carlos, L.D.; Nogueira, H.I. Photoluminescent hybrid materials based on lanthanopolyoxotungstates and 3-hydroxypicolinic acid. J. Alloy. Compd. 2008, 451, 422–425. [Google Scholar] [CrossRef]
- Peacock, R.D.; Weakley, T.J.R. Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. J. Chem. Soc. A 1971, 1836–1839. [Google Scholar] [CrossRef]
- Brevard, C.; Schimpf, R.; Tourne, G.; Tourne, C.M. W-183 NMR—A complete and unequivocal assignment of the tungsten-tungsten connectivities in heteropolytungstates via two-dimensional W-183 NMR techniques. J. Am. Chem. Soc. 1983, 105, 7059–7063. [Google Scholar] [CrossRef]
Catalyst | Solvent | Time (h) | Desulfurization (%) | Ref. |
---|---|---|---|---|
[PMo12O40]3− | [BMIM]PF6 | 2 | 100 a | [34] |
[PW12O40]3− | [BMIM]PF6 | 1 | 100 a | [12] |
[PW11O39]7− | No | 2 | 96.5 a | [7] |
[PW11Zn(H2O)O39]5− | CH3CN | 4 | 100 | [10] |
[Eu(PW11O39)2]11− | CH3CN | 2 | 73.9 | [15] |
[Eu(PW11O39)2]11− | CH3CN | 4 | 100 | [24] |
[Eu(PW11O39)2]11− | [BMIM]PF6 | 1 | 100 | This work |
[Sm(Pmo11O39)2]11− | [BMIM]PF6 | 1.5 | 100 | [24] |
[EuW10O36]9− | [omim]PF6 | 0.5 | 100 b | [25] |
[LaW10O36]9− | [omim]PF6 | 0.5 | 100 b | [27] |
[EuW10O36]9− | [BMIM]PF6 | 1 | 100 | This work |
[TbW10O36]9− | [BMIM]PF6 | 1 | 100 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, S.; Mirante, F.; Castro, B.d.; Granadeiro, C.M.; Balula, S.S. Lindqvist versus Keggin-Type Polyoxometalates as Catalysts for Effective Desulfurization of Fuels. Catalysts 2022, 12, 581. https://doi.org/10.3390/catal12060581
Fernandes S, Mirante F, Castro Bd, Granadeiro CM, Balula SS. Lindqvist versus Keggin-Type Polyoxometalates as Catalysts for Effective Desulfurization of Fuels. Catalysts. 2022; 12(6):581. https://doi.org/10.3390/catal12060581
Chicago/Turabian StyleFernandes, Simone, Fátima Mirante, Baltazar de Castro, Carlos M. Granadeiro, and Salete S. Balula. 2022. "Lindqvist versus Keggin-Type Polyoxometalates as Catalysts for Effective Desulfurization of Fuels" Catalysts 12, no. 6: 581. https://doi.org/10.3390/catal12060581