Cancers 2012, 4(3), 725-742; doi:10.3390/cancers4030725
Article

Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics

1email, 2email, 3email, 1email, 2email, 1email, 1email, 4email, 2email and 1,2,* email
Received: 17 May 2012; in revised form: 28 June 2012 / Accepted: 9 July 2012 / Published: 18 July 2012
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: There is critical need for improved biomarker assessment platforms which integrate traditional pathological parameters (TNM stage, grade and ER/PR/HER2 status) with molecular profiling, to better define prognostic subgroups or systemic treatment response. One roadblock is the lack of semi-quantitative methods which reliably measure biomarker expression. Our study assesses reliability of automated immunohistochemistry (IHC) scoring compared to manual scoring of five selected biomarkers in a tissue microarray (TMA) of 63 human breast cancer cases, and correlates these markers with clinico-pathological data. TMA slides were scanned into an Ariol Imaging System, and histologic (H) scores (% positive tumor area x staining intensity 0–3) were calculated using trained algorithms. H scores for all five biomarkers concurred with pathologists’ scores, based on Pearson correlation coefficients (0.80–0.90) for continuous data and Kappa statistics (0.55–0.92) for positive vs. negative stain. Using continuous data, significant association of pERK expression with absence of LVI (p = 0.005) and lymph node negativity (p = 0.002) was observed. p53 over-expression, characteristic of dysfunctional p53 in cancer, and Ki67 were associated with high grade (p = 0.032 and 0.0007, respectively). Cyclin D1 correlated inversely with ER/PR/HER2-ve (triple negative) tumors (p = 0.0002). Thus automated quantitation of immunostaining concurs with pathologists’ scoring, and provides meaningful associations with clinico-pathological data.
Keywords: breast cancer; p53/cyclin D1/Ki67/pERK; tissue microarray; automated image analysis; clinico-pathological parameters
PDF Full-text Download PDF Full-Text [1656 KB, uploaded 18 July 2012 13:44 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Cass, J.D.; Varma, S.; Day, A.G.; Sangrar, W.; Rajput, A.B.; Raptis, L.H.; Squire, J.; Madarnas, Y.; SenGupta, S.K.; Elliott, B.E. Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics. Cancers 2012, 4, 725-742.

AMA Style

Cass JD, Varma S, Day AG, Sangrar W, Rajput AB, Raptis LH, Squire J, Madarnas Y, SenGupta SK, Elliott BE. Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics. Cancers. 2012; 4(3):725-742.

Chicago/Turabian Style

Cass, Jamaica D.; Varma, Sonal; Day, Andrew G.; Sangrar, Waheed; Rajput, Ashish B.; Raptis, Leda H.; Squire, Jeremy; Madarnas, Yolanda; SenGupta, Sandip K.; Elliott, Bruce E. 2012. "Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics." Cancers 4, no. 3: 725-742.

Cancers EISSN 2072-6694 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert