A Proteomic Examination of Plasma Extracellular Vesicles Across Colorectal Cancer Stages Uncovers Biological Insights That Potentially Improve Prognosis
Simple Summary
Abstract
1. Introduction
Author (Year) [Ref] | Sample | Sample Size | EV Isolation Method | Analytical Technique | Biomarker (Gene Name) | Clinical Utility | Criteria |
---|---|---|---|---|---|---|---|
Choi et al. (2011) [35] | CRC ascites | 3 CRC ascites | Sucrose gradient and OptiPrep density gradient centrifugation | SDS-PAGE, LC-MS/MS | CD97, CD9, TSPAN8 | CRC diagnosis | 1% FDR protein level |
Chen et al. (2017) [36] | CRC serum | 18 CRC *, 31 HC * Validation on 18 CRC and 18 healthy controls. | Ultracentrifugation | LC-MS/MS, TMT label | AHSG, FN1, HSP90AA1 | CRC diagnosis | 5% FDR peptide level, one peptide 7 ± amino acids |
Shiromizu et al. (2017) [37] | CRC serum | 16 CRC (stage II and IV) and 8 HC (Shotgun). SRM validation 56 CRC, 28 HC. | Sucrose gradient centrifugation | Literature, Shotgun LC-MS, Validation by SRM | ANXA3, ANXA4, ANXA11 | Pre- and post-metastasis CRC | 1% FDR protein and peptide level |
Menck et al. (2017) [38] | CRC Plasma | Overall, 330 cancer patients, of whom 28 were CRC | Ultracentrifugation | Western blotting | EMMPRIN | CRC diagnosis | N/A |
Lee et al. (2018) [39] | CC plasma | 46 CC and 33 HC. Discovery study on HCT29 cell lines. | Differential centrifugation | LC-MS/MS | TSPNA1 | CRC diagnosis | 2 ± peptides with FDR below 2% |
Zhong et al. (2019) [40] | CC serum | 78 stage III CC *, 40 HC * | Ultracentrifugation or Total Exosome Isolation Reagent | LC-MS/MS, TMT label | SPARC, LRG1 | CC diagnosis, recurrence prediction | 2 unique peptides (7 ± amino acids) |
Zheng et al. (2020) [41] | CRC plasma | Discovery *: 10 CRC with/without LM (n = 20), 10 HC Validation **: 13 adenomas, 12 CRC without LM, 12 HC | Sucrose gradient centrifugation | LC-MS/MS, DIA, PRM | FN1, S100A9, HP, FGA | CRC diagnosis | |
Chang et al. (2021) [42] | CRC serum | 12 non-AAs, 13 AAs, 16 stage I CRC, 15 stage II CRC, 16 stage III CRC, 15 stage IV CRC, 13 HC | Size exclusion chromatography | LC-MS/MS | GCLM, KEL, APOF, CFB, PDE5A, ATIC | CRC diagnosis | 1% FDR, 1 razor + unique peptides (6 ± amino acids) |
Lin et al. (2022) [43] | CRC Serum | Discovery: 56 CRC patients with CRLM compared to 7 with benign liver disease (BD). Validation: 154 CRLM, 78 BD (internal) and 110 CRLM (external) | N/A | N/A | CD14, LBP, CFP, Serpin A4, CXCL7 | CRC prognosis after resection. | N/A |
Hou et al. (2022) [44] | CRC Serum | Stage II CRC—16 patients with Perineural Invasion and 16 without as well as 16 HC | Size exclusion chromatography, and Total Exosome Isolation Reagent | TMT-LC-MS/MS | SFN | CRC prognosis | 1% FDR |
Dash et al. (2023) [45] | CRC plasma | Discovery: combination of CRC cell lines and 30 CRC plasma and 30 healthy controls. Validation: 80 CRC (various stages) and 73 HC | Ultracentrifugation | 2D-LC-MS/MS for discovery and MRM validation | ADAM10, CD59, TSPAN9 | CRC diagnosis | 1% FDR, (2 + peptides ≥ 7 aa) |
Zhang et al. (2023) [46] | CRC Faeces | Discovery: Bioinformatics screening followed by confirmation on 4 CRC and 4 HC. ELISA validation on 48 CRC patients and 16 HC faecal samples. | Ultracentrifugation | Western blotting | CD147, A33 | CRC diagnosis | n/a |
Kashara et al. (2023) [47] | CRC Plasma | Discovery phase—26 Stage I (and 26 HC) and 33 Stage IV (and 33 HC);Targeted proteomics—457 proteins. Validation on 141 CRC patients and 9 HC (139 peptides (99 proteins) | Ultracentrifugation | LC-MS/MS and SRM (MS-QBiC) | ORM1 | CRC diagnosis and prognosis | 1% FDR protein present in all samples at threshold levels by absolute quantitation. |
Vallejos et al. (2023) [48] | CRC Plasma | CRC PC (perineural carcinogenesis) (n = 17), CRC VM (visceral metastasis) (n = 17), and CRC NM (non-metastatic) (n = 13)—validation on 9 CRC PC patients followed by Western blotting. | ExoQuick (System biosciences) kit | LC-MS/MS | TLN1, C3 | Metastatic-specific exosome signature for prognosis. | 1% FDR (protein) and 2% FDR (peptide). 2 unique peptides (7 aa) |
2. Materials and Methods
2.1. Isolation of Plasma EVs and Protein Extraction
2.2. Protein Digestion and High-pH Peptide Fractionation
2.3. Peptide Spectral Library Generation (Data-Dependent Acquisition, DDA)
2.4. SWATH-MS (Data-Independent Acquisition, DIA)
2.5. SWATH Data Extraction
2.6. Statistical Analyses
3. Results
3.1. Plasma EV Protein Identification with High-Stringency Protein Inferences
3.2. Evaluation of Plasma EV Isolation and Protein Extraction
3.3. Dysregulated Plasma EV Proteins in Early-Stage CRC Compared to Healthy Controls
3.4. Dysregulated Plasma EV Proteins Between CRC Patients Who Had or Had No Tumour Recurrence—Predict the Risk of Tumour Recurrence
4. Discussion
4.1. EV Isolation from Plasma
4.2. EV Proteins Associated with Early CRC Stage
4.3. EV Proteins Associated with CRC Tumour Recurrence
4.4. Discrepancies Across Previous Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Araghi, M.; Soerjomataram, I.; Bardot, A.; Ferlay, J.; Cabasag, C.J.; Morrison, D.S.; De, P.; Tervonen, H.; Walsh, P.M.; Bucher, O.; et al. Changes in colorectal cancer incidence in seven high-income countries: A population-based study. Lancet Gastroenterol. Hepatol. 2019, 4, 511–518. [Google Scholar] [CrossRef]
- Alnakli, A.A.A.; Mohamedali, A.; Heng, B.; Chan, C.; Shin, J.-S.; Solomon, M.; Chapuis, P.; Guillemin, G.J.; Baker, M.S.; Ahn, S.B. Protein prognostic biomarkers in stage II colorectal cancer: Implications for post-operative management. BJC Rep. 2024, 2, 13. [Google Scholar] [CrossRef]
- Young, P.E.; Womeldorph, C.M.; Johnson, E.K.; Maykel, J.A.; Brucher, B.; Stojadinovic, A.; Avital, I.; Nissan, A.; Steele, S.R. Early detection of colorectal cancer recurrence in patients undergoing surgery with curative intent: Current status and challenges. J. Cancer 2014, 5, 262–271. [Google Scholar] [CrossRef]
- Navarro, M.; Nicolas, A.; Ferrandez, A.; Lanas, A. Colorectal cancer population screening programs worldwide in 2016: An update. World J. Gastroenterol. 2017, 23, 3632–3642. [Google Scholar] [CrossRef]
- AIHW. National Bowel Cancer Screening Program: Monitoring Report 2018; Australian Institute of Health and Welfare: Canberra, Australia, 2018.
- Bosch, L.J.W.; Melotte, V.; Mongera, S.; Daenen, K.L.J.; Coupé, V.M.H.; van Turenhout, S.T.; Stoop, E.M.; de Wijkerslooth, T.R.; Mulder, C.J.J.; Rausch, C.; et al. Multitarget Stool DNA Test Performance in an Average-Risk Colorectal Cancer Screening Population. Am. J. Gastroenterol. 2019, 114, 1909–1918. [Google Scholar] [CrossRef]
- Chambers, J.A.; Callander, A.S.; Grangeret, R.; O’Carroll, R.E. Attitudes towards the Faecal Occult Blood Test (FOBT) versus the Faecal Immunochemical Test (FIT) for colorectal cancer screening: Perceived ease of completion and disgust. BMC Cancer 2016, 16, 96. [Google Scholar] [CrossRef]
- Wong, C.K.; Fedorak, R.N.; Prosser, C.I.; Stewart, M.E.; van Zanten, S.V.; Sadowski, D.C. The sensitivity and specificity of guaiac and immunochemical fecal occult blood tests for the detection of advanced colonic adenomas and cancer. Int. J. Color. Dis. 2012, 27, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Geyer, P.E.; Kulak, N.A.; Pichler, G.; Holdt, L.M.; Teupser, D.; Mann, M. Plasma Proteome Profiling to Assess Human Health and Disease. Cell Syst. 2016, 2, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Panteleev, M.A.; Abaeva, A.A.; Balandina, A.N.; Belyaev, A.V.; Nechipurenko, D.Y.; Obydennyi, S.I.; Sveshnikova, A.N.; Shibeko, A.M.; Ataullakhanov, F.I. Extracellular vesicles of blood plasma: Content, origin, and properties. Biochem. Suppl. Ser. A Membr. Cell Biol. 2017, 11, 187–192. [Google Scholar] [CrossRef]
- Kalluri, R.; McAndrews, K.M. The role of extracellular vesicles in cancer. Cell 2023, 186, 1610–1626. [Google Scholar] [CrossRef]
- Antonyak, M.A.; Cerione, R.A. Microvesicles as mediators of intercellular communication in cancer. Methods Mol. Biol. 2014, 1165, 147–173. [Google Scholar] [CrossRef]
- Malloci, M.; Perdomo, L.; Veerasamy, M.; Andriantsitohaina, R.; Simard, G.; Martinez, M.C. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid. Redox Signal 2018, 30, 813–856. [Google Scholar] [CrossRef]
- Kotelevets, L.; Chastre, E. Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers 2023, 15, 1107. [Google Scholar] [CrossRef] [PubMed]
- Greening, D.W.; Xu, R.; Gopal, S.K.; Rai, A.; Simpson, R.J. Proteomic insights into extracellular vesicle biology—Defining exosomes and shed microvesicles. Expert. Rev. Proteom. 2017, 14, 69–95. [Google Scholar] [CrossRef]
- Atkin-Smith, G.K.; Paone, S.; Zanker, D.J.; Duan, M.; Phan, T.K.; Chen, W.; Hulett, M.D.; Poon, I.K. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Sci. Rep. 2017, 7, 39846. [Google Scholar] [CrossRef] [PubMed]
- Bebelman, M.P.; Smit, M.J.; Pegtel, D.M.; Baglio, S.R. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther. 2018, 188, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, F.; Baur, A. Biogenesis and Functions of Exosomes and Extracellular Vesicles. Methods Mol. Biol. 2016, 1448, 201–216. [Google Scholar] [CrossRef]
- Titu, S.; Gata, V.A.; Decea, R.M.; Mocan, T.; Dina, C.; Irimie, A.; Lisencu, C.I. Exosomes in Colorectal Cancer: From Physiology to Clinical Applications. Int. J. Mol. Sci. 2023, 24, 4382. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.; Kim, H.S.; Bojmar, L.; Gyan, K.E.; Cioffi, M.; Hernandez, J.; Zambirinis, C.P.; Rodrigues, G.; Molina, H.; Heissel, S.; et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 2020, 182, 1044–1061.e18. [Google Scholar] [CrossRef] [PubMed]
- Kassassir, H.; Papiewska-Pająk, I.; Kryczka, J.; Boncela, J.; Kowalska, M.A. Platelet-derived microparticles stimulate the invasiveness of colorectal cancer cells via the p38MAPK-MMP-2/MMP-9 axis. Cell Commun. Signal 2023, 21, 51. [Google Scholar] [CrossRef]
- Ginestra, A.; La Placa, M.D.; Saladino, F.; Cassarà, D.; Nagase, H.; Vittorelli, M.L. The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res. 1998, 18, 3433–3437. [Google Scholar] [PubMed]
- Xue, V.W.; Yang, C.; Wong, S.C.C.; Cho, W.C.S. Proteomic profiling in extracellular vesicles for cancer detection and monitoring. Proteomics 2021, 21, e2000094. [Google Scholar] [CrossRef]
- Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J. Mol. Biol. 2016, 428, 688–692. [Google Scholar] [CrossRef]
- Kalra, H.; Simpson, R.J.; Ji, H.; Aikawa, E.; Altevogt, P.; Askenase, P.; Bond, V.C.; Borràs, F.E.; Breakefield, X.; Budnik, V.; et al. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012, 10, e1001450. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, E.W.; Omenn, G.S.; Sun, Z.; Maes, M.; Pernemalm, M.; Palaniappan, K.K.; Letunica, N.; Vandenbrouck, Y.; Brun, V.; Tao, S.C.; et al. Advances and Utility of the Human Plasma Proteome. J. Proteome Res. 2021, 20, 5241–5263. [Google Scholar] [CrossRef]
- Ahn, S.B.; Sharma, S.; Mohamedali, A.; Mahboob, S.; Redmond, W.J.; Pascovici, D.; Wu, J.X.; Zaw, T.; Adhikari, S.; Vaibhav, V.; et al. Potential early clinical stage colorectal cancer diagnosis using a proteomics blood test panel. Clin. Proteom. 2019, 16, 34. [Google Scholar] [CrossRef]
- Mahboob, S.; Ahn, S.B.; Cheruku, H.R.; Cantor, D.; Rennel, E.; Fredriksson, S.; Edfeldt, G.; Breen, E.J.; Khan, A.; Mohamedali, A.; et al. A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes’ stages A-D colorectal cancers. Clin. Proteom. 2015, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.B.; Kamath, K.S.; Mohamedali, A.; Noor, Z.; Wu, J.X.; Pascovici, D.; Adhikari, S.; Cheruku, H.R.; Guillemin, G.J.; McKay, M.J.; et al. Use of a Recombinant Biomarker Protein DDA Library Increases DIA Coverage of Low Abundance Plasma Proteins. J. Proteome Res. 2021, 20, 2374–2389. [Google Scholar] [CrossRef]
- Gillet, L.C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol. Cell Proteom. 2012, 11, O111.016717. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, C.; Gillet, L.; Rosenberger, G.; Amon, S.; Collins, B.C.; Aebersold, R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2018, 14, e8126. [Google Scholar] [CrossRef]
- Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Geyer, P.E.; Holdt, L.M.; Teupser, D.; Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 2017, 13, 942. [Google Scholar] [CrossRef]
- Choi, D.S.; Park, J.O.; Jang, S.C.; Yoon, Y.J.; Jung, J.W.; Choi, D.Y.; Kim, J.W.; Kang, J.S.; Park, J.; Hwang, D.; et al. Proteomic analysis of microvesicles derived from human colorectal cancer ascites. Proteomics 2011, 11, 2745–2751. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, Y.; Xu, L.; Zhan, S.; Xiao, Y.; Gao, Y.; Wu, B.; Ge, W. Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics. Int. J. Cancer 2017, 140, 900–913. [Google Scholar] [CrossRef]
- Shiromizu, T.; Kume, H.; Ishida, M.; Adachi, J.; Kano, M.; Matsubara, H.; Tomonaga, T. Quantitation of putative colorectal cancer biomarker candidates in serum extracellular vesicles by targeted proteomics. Sci. Rep. 2017, 7, 12782. [Google Scholar] [CrossRef]
- Menck, K.; Bleckmann, A.; Wachter, A.; Hennies, B.; Ries, L.; Schulz, M.; Balkenhol, M.; Pukrop, T.; Schatlo, B.; Rost, U.; et al. Characterisation of tumour-derived microvesicles in cancer patients’ blood and correlation with clinical outcome. J. Extracell. Vesicles 2017, 6, 1340745. [Google Scholar] [CrossRef]
- Lee, C.H.; Im, E.J.; Moon, P.G.; Baek, M.C. Discovery of a diagnostic biomarker for colon cancer through proteomic profiling of small extracellular vesicles. BMC Cancer 2018, 18, 1058. [Google Scholar] [CrossRef]
- Zhong, M.E.; Chen, Y.; Xiao, Y.; Xu, L.; Zhang, G.; Lu, J.; Qiu, H.; Ge, W.; Wu, B. Serum extracellular vesicles contain SPARC and LRG1 as biomarkers of colon cancer and differ by tumour primary location. eBioMedicine 2019, 50, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Xu, K.; Zhou, B.; Chen, T.; Huang, Y.; Li, Q.; Wen, F.; Ge, W.; Wang, J.; Yu, S.; et al. A circulating extracellular vesicles-based novel screening tool for colorectal cancer revealed by shotgun and data-independent acquisition mass spectrometry. J. Extracell. Vesicles 2020, 9, 1750202. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.C.; Hsu, Y.C.; Chiu, H.M.; Ueda, K.; Wu, M.S.; Kao, C.H.; Shen, T.L. Exploration of the Proteomic Landscape of Small Extracellular Vesicles in Serum as Biomarkers for Early Detection of Colorectal Neoplasia. Front. Oncol. 2021, 11, 732743. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Baenke, F.; Lai, X.; Schneider, M.; Helm, D.; Polster, H.; Rao, V.S.; Ganig, N.; Wong, F.C.; Seifert, L.; et al. Comprehensive proteomic profiling of serum extracellular vesicles in patients with colorectal liver metastases identifies a signature for non-invasive risk stratification and early-response evaluation. Mol. Cancer 2022, 21, 91. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Pan, M.; Xiao, Y.; Ge, W. Serum Extracellular Vesicle Stratifin Is a Biomarker of Perineural Invasion in Patients With Colorectal Cancer and Predicts Worse Prognosis. Front. Oncol. 2022, 12, 912584. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Wu, C.C.; Wu, C.C.; Chiang, S.F.; Lu, Y.T.; Yeh, C.Y.; You, J.F.; Chu, L.J.; Yeh, T.S.; Yu, J.S. Extracellular Vesicle Membrane Protein Profiling and Targeted Mass Spectrometry Unveil CD59 and Tetraspanin 9 as Novel Plasma Biomarkers for Detection of Colorectal Cancer. Cancers 2022, 15, 177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.; Yang, X.; Jiang, Y.; Li, A.; Cong, J.; Li, Y.; Xie, Q.; Xu, C.; Liu, D. Identification of faecal extracellular vesicles as novel biomarkers for the non-invasive diagnosis and prognosis of colorectal cancer. J. Extracell. Vesicles 2023, 12, e12300. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, K.; Narumi, R.; Nagayama, S.; Masuda, K.; Esaki, T.; Obama, K.; Tomonaga, T.; Sakai, Y.; Shimizu, Y.; Adachi, J. A large-scale targeted proteomics of plasma extracellular vesicles shows utility for prognosis prediction subtyping in colorectal cancer. Cancer Med. 2023, 12, 7616–7626. [Google Scholar] [CrossRef]
- Vallejos, P.A.; Fuller, R.N.; Kabagwira, J.; Kwong, M.L.; Gonda, A.; McMullen, J.R.W.; Le, N.; Selleck, M.J.; Miller, L.D.; Perry, C.C.; et al. Exosomal proteins as a source of biomarkers in colon cancer-derived peritoneal carcinomatosis—A pilot study. Proteom. Clin. Appl. 2023, 17, e2100085. [Google Scholar] [CrossRef] [PubMed]
- Braga-Lagache, S.; Buchs, N.; Iacovache, M.I.; Zuber, B.; Jackson, C.B.; Heller, M. Robust Label-free, Quantitative Profiling of Circulating Plasma Microparticle (MP) Associated Proteins. Mol. Cell Proteom. 2016, 15, 3640–3652. [Google Scholar] [CrossRef]
- Ahn, S.B.; Mohamedali, A.; Pascovici, D.; Adhikari, S.; Sharma, S.; Nice, E.C.; Baker, M.S. Proteomics Reveals Cell-Surface Urokinase Plasminogen Activator Receptor Expression Impacts Most Hallmarks of Cancer. Proteomics 2019, 19, e1900026. [Google Scholar] [CrossRef]
- Adhikari, S.; Chen, L.; Huang, P.; Tian, R. Proteomic Analysis of Secreted Proteins from Cell Microenvironment. Methods Mol. Biol. 2017, 1662, 45–58. [Google Scholar] [CrossRef]
- Shilov, I.V.; Seymour, S.L.; Patel, A.A.; Loboda, A.; Tang, W.H.; Keating, S.P.; Hunter, C.L.; Nuwaysir, L.M.; Schaeffer, D.A. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol. Cell Proteom. 2007, 6, 1638–1655. [Google Scholar] [CrossRef]
- Wu, J.X.; Song, X.; Pascovici, D.; Zaw, T.; Care, N.; Krisp, C.; Molloy, M.P. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries. Mol. Cell Proteom. 2016, 15, 2501–2514. [Google Scholar] [CrossRef]
- Bjelosevic, S.; Pascovici, D.; Ping, H.; Karlaftis, V.; Zaw, T.; Song, X.; Molloy, M.P.; Monagle, P.; Ignjatovic, V. Quantitative Age-specific Variability of Plasma Proteins in Healthy Neonates, Children and Adults. Mol. Cell Proteom. 2017, 16, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Pascovici, D.; Handler, D.C.; Wu, J.X.; Haynes, P.A. Multiple testing corrections in quantitative proteomics: A useful but blunt tool. Proteomics 2016, 16, 2448–2453. [Google Scholar] [CrossRef]
- Noor, Z.; Ahn, S.B.; Baker, M.S.; Ranganathan, S.; Mohamedali, A. Mass spectrometry-based protein identification in proteomics-a review. Brief. Bioinform. 2021, 22, 1620–1638. [Google Scholar] [CrossRef]
- Adhikari, S.; Nice, E.C.; Deutsch, E.W.; Lane, L.; Omenn, G.S.; Pennington, S.R.; Paik, Y.K.; Overall, C.M.; Corrales, F.J.; Cristea, I.M.; et al. A high-stringency blueprint of the human proteome. Nat. Commun. 2020, 11, 5301. [Google Scholar] [CrossRef]
- Deutsch, E.W.; Lane, L.; Overall, C.M.; Bandeira, N.; Baker, M.S.; Pineau, C.; Moritz, R.L.; Corrales, F.; Orchard, S.; Van Eyk, J.E.; et al. Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 3.0. J. Proteome Res. 2019, 18, 4108–4116. [Google Scholar] [CrossRef] [PubMed]
- Grenhas, M.; Lopes, R.; Ferreira, B.V.; Barahona, F.; João, C.; Carneiro, E.A. Size-Exclusion Chromatography: A Path to Higher Yield and Reproducibility Compared to Sucrose Cushion Ultracentrifugation for Extracellular Vesicle Isolation in Multiple Myeloma. Int. J. Mol. Sci. 2024, 25, 8496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yu, K.; You, Y.; Jiang, P.; Wu, Z.; DeTure, M.A.; Dickson, D.W.; Ikezu, S.; Peng, J.; Ikezu, T. Comprehensive characterization of human brain-derived extracellular vesicles using multiple isolation methods: Implications for diagnostic and therapeutic applications. J. Extracell. Vesicles 2023, 12, e12358. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.C.; Lin, C.C.; Lin, Y.Y.; Yang, W.H.; Twu, Y.C.; Teng, H.W.; Hwang, W.L. Molecular actions of exosomes and their theragnostics in colorectal cancer: Current findings and limitations. Cell Oncol. 2022, 45, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Mammes, A.; Pasquier, J.; Mammes, O.; Conti, M.; Douard, R.; Loric, S. Extracellular vesicles: General features and usefulness in diagnosis and therapeutic management of colorectal cancer. World J. Gastrointest. Oncol. 2021, 13, 1561–1598. [Google Scholar] [CrossRef] [PubMed]
- Schwartsburd, P. Cancer-Induced Reprogramming of Host Glucose Metabolism: “Vicious Cycle” Supporting Cancer Progression. Front. Oncol. 2019, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Aseervatham, J. Cytoskeletal Remodeling in Cancer. Biology 2020, 9, 385. [Google Scholar] [CrossRef]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Cvejic, A.; Haer-Wigman, L.; Stephens, J.C.; Kostadima, M.; Smethurst, P.A.; Frontini, M.; van den Akker, E.; Bertone, P.; Bielczyk-Maczyńska, E.; Farrow, S.; et al. SMIM1 underlies the Vel blood group and influences red blood cell traits. Nat. Genet. 2013, 45, 542–545. [Google Scholar] [CrossRef]
- Fritz, C.D.L.; Otegbeye, E.E.; Zong, X.; Demb, J.; Nickel, K.B.; Olsen, M.A.; Mutch, M.; Davidson, N.O.; Gupta, S.; Cao, Y. Red-flag Signs and Symptoms for Earlier Diagnosis of Early-Onset Colorectal Cancer. J. Natl. Cancer Inst. 2023, 115, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Varela, A.; Novellasdemunt, L.; Barriga, F.M.; Hernando-Momblona, X.; Cañellas-Socias, A.; Cano-Crespo, S.; Sevillano, M.; Cortina, C.; Stork, D.; Morral, C.; et al. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. Nat. Cancer 2022, 3, 1052–1070. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, L.; Song, J.; Wang, G.; Li, P.; Li, W.; Luo, P.; Sun, X.; Wu, J.; Liu, Y.; et al. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol. Cancer 2022, 21, 86. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, C.; Ai, H. Rab5a is overexpressed in oral cancer and promotes invasion through ERK/MMP signaling. Mol. Med. Rep. 2017, 16, 4569–4576. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Bernal, C.; Silvano, M.; Anand, S.; Ruiz, I.A.A. The protein secretion modulator TMED9 drives CNIH4/TGFα/GLI signaling opposing TMED3-WNT-TCF to promote colon cancer metastases. Oncogene 2019, 38, 5817–5837. [Google Scholar] [CrossRef]
- Jiang, Y.; Ou, Y.; Cheng, X. Role of TSG101 in cancer. Front. Biosci. 2013, 18, 279–288. [Google Scholar] [CrossRef]
- Liu, J.; Ren, L.; Li, S.; Li, W.; Zheng, X.; Yang, Y.; Fu, W.; Yi, J.; Wang, J.; Du, G. The biology, function, and applications of exosomes in cancer. Acta Pharm. Sin. B 2021, 11, 2783–2797. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Dai, Q.; Grimm, M.O.; Steinbach, D. The Antithetic Roles of IQGAP2 and IQGAP3 in Cancers. Cancers 2023, 15, 1115. [Google Scholar] [CrossRef]
- Bettio, V.; Mazzucco, E.; Antona, A.; Cracas, S.; Varalda, M.; Venetucci, J.; Bruno, S.; Chiabotto, G.; Venegoni, C.; Vasile, A.; et al. Extracellular vesicles from human plasma for biomarkers discovery: Impact of anticoagulants and isolation techniques. PLoS ONE 2023, 18, e0285440. [Google Scholar] [CrossRef]
- Dong, L.; Zieren, R.C.; Horie, K.; Kim, C.J.; Mallick, E.; Jing, Y.; Feng, M.; Kuczler, M.D.; Green, J.; Amend, S.R.; et al. Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium. J. Extracell. Vesicles 2020, 10, e12044. [Google Scholar] [CrossRef]
- Skoczylas, Ł.; Gawin, M.; Fochtman, D.; Widłak, P.; Whiteside, T.L.; Pietrowska, M. Immune capture and protein profiling of small extracellular vesicles from human plasma. Proteomics 2023, 24, e2300180. [Google Scholar] [CrossRef] [PubMed]
- Vergauwen, G.; Dhondt, B.; Van Deun, J.; De Smedt, E.; Berx, G.; Timmerman, E.; Gevaert, K.; Miinalainen, I.; Cocquyt, V.; Braems, G.; et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci. Rep. 2017, 7, 2704. [Google Scholar] [CrossRef]
- Zhang, Q.; Jeppesen, D.K.; Higginbotham, J.N.; Franklin, J.L.; Coffey, R.J. Comprehensive isolation of extracellular vesicles and nanoparticles. Nat. Protoc. 2023, 18, 1462–1487. [Google Scholar] [CrossRef] [PubMed]
- Wiklander, O.P.; Nordin, J.Z.; O’Loughlin, A.; Gustafsson, Y.; Corso, G.; Mäger, I.; Vader, P.; Lee, Y.; Sork, H.; Seow, Y.; et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 2015, 4, 26316. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.A.; Fahmy, A.; Sorich, M.J.; Best, O.G.; Rowland, A.; Useckaite, Z. Importance of between and within Subject Variability in Extracellular Vesicle Abundance and Cargo when Performing Biomarker Analyses. Cells 2021, 10, 485. [Google Scholar] [CrossRef]
- Auber, M.; Svenningsen, P. An estimate of extracellular vesicle secretion rates of human blood cells. J. Extracell. Biol. 2022, 1, e46. [Google Scholar] [CrossRef] [PubMed]
- Lucien, F.; Gustafson, D.; Lenassi, M.; Li, B.; Teske, J.J.; Boilard, E.; von Hohenberg, K.C.; Falcón-Perez, J.M.; Gualerzi, A.; Reale, A.; et al. MIBlood-EV: Minimal information to enhance the quality and reproducibility of blood extracellular vesicle research. J. Extracell. Vesicles 2023, 12, e12385. [Google Scholar] [CrossRef]
- Taha, H.B. Plasma versus serum for extracellular vesicle (EV) isolation: A duel for reproducibility and accuracy for CNS-originating EVs biomarker analysis. J. Neurosci. Res. 2023, 101, 1677–1686. [Google Scholar] [CrossRef]
- Tsamchoe, M.; Petrillo, S.; Lazaris, A.; Metrakos, P. Isolation of extracellular vesicles from human plasma samples: The importance of controls. Biotechnol. J. 2023, 18, e2200575. [Google Scholar] [CrossRef] [PubMed]
Variable | Category | HCs (n = 20) | Stage I (n = 20) | Stage II (n = 20) | Stage III (n = 20) | Stage IV (n = 20) |
---|---|---|---|---|---|---|
Age | Median ± SD | 63.5 ± 7.8 | 63.5 ± 8.1 | 70.5 ± 7.5 | 60.5 ± 8.3 | 63.0 ± 7.6 |
Gender | Male (%) | 10 (50) | 10 (50) | 10 (50) | 9 (45) | 9 (45) |
Female (%) | 10 (50) | 10 (50) | 10 (50) | 11 (55) | 11 (55) | |
5-yr recurrence Postoperative | Yes (%) | - | 2 (10) | 4 (20) | 7 (35) | - |
No (%) | - | 18 (90) | 16 (80) | 13 (65) | - | |
5-yr OS Postoperative | Yes (%) | - | 20 (100) | 16 (80) | 13 (65) | 6 (30) |
No (%) | - | 0 (0) | 4 (20) | 7 (35) | 14 (70) | |
Postoperative chemotherapy | Yes (%) | - | 1 (5) | 1 (5) | 17 (85) | 8 (40) |
No (%) | - | 19 (95) | 19 (95) | 3 (15) | 12 (60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamedali, A.; Heng, B.; Amirkhani, A.; Krishnamurthy, S.; Cantor, D.; Lee, P.J.M.; Shin, J.-S.; Solomon, M.; Guillemin, G.J.; Baker, M.S.; et al. A Proteomic Examination of Plasma Extracellular Vesicles Across Colorectal Cancer Stages Uncovers Biological Insights That Potentially Improve Prognosis. Cancers 2024, 16, 4259. https://doi.org/10.3390/cancers16244259
Mohamedali A, Heng B, Amirkhani A, Krishnamurthy S, Cantor D, Lee PJM, Shin J-S, Solomon M, Guillemin GJ, Baker MS, et al. A Proteomic Examination of Plasma Extracellular Vesicles Across Colorectal Cancer Stages Uncovers Biological Insights That Potentially Improve Prognosis. Cancers. 2024; 16(24):4259. https://doi.org/10.3390/cancers16244259
Chicago/Turabian StyleMohamedali, Abidali, Benjamin Heng, Ardeshir Amirkhani, Shivani Krishnamurthy, David Cantor, Peter Jun Myung Lee, Joo-Shik Shin, Michael Solomon, Gilles J. Guillemin, Mark S. Baker, and et al. 2024. "A Proteomic Examination of Plasma Extracellular Vesicles Across Colorectal Cancer Stages Uncovers Biological Insights That Potentially Improve Prognosis" Cancers 16, no. 24: 4259. https://doi.org/10.3390/cancers16244259
APA StyleMohamedali, A., Heng, B., Amirkhani, A., Krishnamurthy, S., Cantor, D., Lee, P. J. M., Shin, J.-S., Solomon, M., Guillemin, G. J., Baker, M. S., & Ahn, S. B. (2024). A Proteomic Examination of Plasma Extracellular Vesicles Across Colorectal Cancer Stages Uncovers Biological Insights That Potentially Improve Prognosis. Cancers, 16(24), 4259. https://doi.org/10.3390/cancers16244259