Global Trial Representation and Availability of Tyrosine Kinase Inhibitors for Treatment of Chronic Myeloid Leukemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Clinical Trial Data
2.3. Statistical Analysis
3. Results
3.1. Trends in Disability-Adjusted Life Years and Incidence Rates
3.2. Tyrosine Kinase Inhibitor Trials Sites, Regions, and SDI Status
3.3. Spatial Distribution of Tyrosine Kinase Inhibitor Trial Sites and DALYs
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasaki, K.; Strom, S.S.; O’Brien, S.; Jabbour, E.; Ravandi, F.; Konopleva, M.; Borthakur, G.; Pemmaraju, N.; Daver, N.; Jain, P.; et al. Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: Analysis of patient data from six prospective clinical trials. Lancet Haematol. 2015, 2, e186–e193. [Google Scholar] [CrossRef] [PubMed]
- US Congress. National Institutes of Health Revitalization Act of 1993: Act to Amend the Public Health Service Act to Revise and Extend the Programs of the National Institutes of Health, and for Other Purposes; US Congress: Washington, DC, USA, 1993; pp. 101–143.
- Casey, M.; Odhiambo, L.; Aggarwal, N.; Shoukier, M.; Islam, K.M.; Cortes, J. Representation of the population in need for pivotal clinical trials in lymphomas. Blood 2023, 142, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Casey, M.; Odhiambo, L.; Aggarwal, N.; Shoukier, M.; Garner, J.; Islam, K.M.; Cortes, J.E. Are Pivotal Clinical Trials for Drugs Approved for Leukemias and Multiple Myeloma Representative of the Population at Risk? J. Clin. Oncol. 2022, 40, 3719–3729. [Google Scholar] [CrossRef] [PubMed]
- Hantel, A.; Luskin, M.R.; Garcia, J.S.; Stock, W.; DeAngelo, D.J.; Abel, G.A. Racial and ethnic enrollment disparities and demographic reporting requirements in acute leukemia clinical trials. Blood Adv. 2021, 5, 4352–4360. [Google Scholar] [CrossRef] [PubMed]
- Touma, J.; McLachlan, A.J.; Gross, A.S. The role of ethnicity in personalized dosing of small molecule tyrosine kinase inhibitors used in oncology. Transl. Cancer Res. 2017, 6, S1558–S1591. [Google Scholar] [CrossRef]
- Marino, M.; Jamal, Z.; Zito, P.M. Pharmacodynamics; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Gambacorti-Passerini, C.; Antolini, L.; Mahon, F.X.; Guilhot, F.; Deininger, M.; Fava, C.; Nagler, A.; Della Casa, C.M.; Morra, E.; Abruzzese, E.; et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J. Natl. Cancer Inst. 2011, 103, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Institue of Health Metric and Evaluation. Global Burden of Disease Study 2021 (GBD 2021) Socio-Demographic Index (SDI) 1950–2021. Available online: https://ghdx.healthdata.org/record/global-burden-disease-study-2021-gbd-2021-socio-demographic-index-sdi-1950%E2%80%932021 (accessed on 1 March 2022).
- GBD 2017 Oral Disorders Collaborators; Bernabe, E.; Marcenes, W.; Hernandez, C.R.; Bailey, J.; Abreu, L.G.; Alipour, V.; Amini, S.; Arabloo, J.; Arefi, Z.; et al. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J. Dent. Res. 2020, 99, 362–373. [Google Scholar] [CrossRef]
- World Health Organization. Disability-Adjusted Life Years (DALYs). Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/158 (accessed on 1 March 2022).
- Gillis, D.; Edwards, B.P.M. The utility of joinpoint regression for estimating population parameters given changes in population structure. Heliyon 2019, 5, e02515. [Google Scholar] [CrossRef]
- National Cancer Institute. Joinpoint Trend Analysis Software. Available online: https://surveillance.cancer.gov/joinpoint/ (accessed on 1 July 2023).
- Hu, Y.; Li, Q.; Hou, M.; Peng, J.; Yang, X.; Xu, S. Magnitude and Temporal Trend of the Chronic Myeloid Leukemia: On the Basis of the Global Burden of Disease Study 2019. JCO Glob. Oncol. 2021, 7, 1429–1441. [Google Scholar] [CrossRef]
- Ning, L.; Hu, C.; Lu, P.; Que, Y.; Zhu, X.; Li, D. Trends in disease burden of chronic myeloid leukemia at the global, regional, and national levels: A population-based epidemiologic study. Exp. Hematol. Oncol. 2020, 9, 29. [Google Scholar] [CrossRef]
- Lin, Q.; Mao, L.; Shao, L.; Zhu, L.; Han, Q.; Zhu, H.; Jin, J.; You, L. Global, Regional, and National Burden of Chronic Myeloid Leukemia, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Front. Oncol. 2020, 10, 580759. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, S.; Lopez-Cortes, A.; Indacochea, A.; Garcia-Cardenas, J.M.; Zambrano, A.K.; Cabrera-Andrade, A.; Guevara-Ramirez, P.; Gonzalez, D.A.; Leone, P.E.; Paz, Y.M.C. Analysis of Racial/Ethnic Representation in Select Basic and Applied Cancer Research Studies. Sci. Rep. 2018, 8, 13978. [Google Scholar] [CrossRef] [PubMed]
- Camidge, D.R.; Park, H.; Smoyer, K.E.; Jacobs, I.; Lee, L.J.; Askerova, Z.; McGinnis, J.; Zakharia, Y. Race and ethnicity representation in clinical trials: Findings from a literature review of Phase I oncology trials. Future Oncol. 2021, 17, 3271–3280. [Google Scholar] [CrossRef] [PubMed]
- Aldrighetti, C.M.; Niemierko, A.; Van Allen, E.; Willers, H.; Kamran, S.C. Racial and Ethnic Disparities Among Participants in Precision Oncology Clinical Studies. JAMA Netw. Open 2021, 4, e2133205. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, C.; Mitchell, G.; Nikles, J. Barriers for conducting clinical trials in developing countries- a systematic review. Int. J. Equity Health 2018, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Bouche, G.; Crisp, N.; Andre, N. Challenges and opportunities for cancer clinical trials in low- and middle-income countries. Nat. Cancer 2020, 1, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Ruff, P.; Al-Sukhun, S.; Blanchard, C.; Shulman, L.N. Access to Cancer Therapeutics in Low- and Middle-Income Countries. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, M.; Tong, S.Y.C.; Kumar, A.; Venkatesh, B. Geographical Representation of Low- and Middle-Income Countries in Randomized Clinical Trials for COVID-19. JAMA Netw. Open 2022, 5, e220444. [Google Scholar] [CrossRef]
- Radich, J.P.; Deininger, M.; Abboud, C.N.; Altman, J.K.; Berman, E.; Bhatia, R.; Bhatnagar, B.; Curtin, P.; DeAngelo, D.J.; Gotlib, J.; et al. Chronic Myeloid Leukemia, Version 1.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2018, 16, 1108–1135. [Google Scholar] [CrossRef]
- Aljurf, M.; Weisdorf, D.; Hashmi, S.K.; Nassar, A.; Gluckman, E.; Mohty, M.; Rizzo, D.; Pasquini, M.; Hamadani, M.; Saber, W.; et al. Worldwide Network for Blood and Marrow Transplantation (WBMT) recommendations for establishing a hematopoietic stem cell transplantation program in countries with limited resources (Part II): Clinical, technical and socio-economic considerations. Hematol. Oncol. Stem Cell Ther. 2020, 13, 7–16. [Google Scholar] [CrossRef]
- Aljurf, M.; Weisdorf, D.; Alfraih, F.; Szer, J.; Muller, C.; Confer, D.; Hashmi, S.; Kroger, N.; Shaw, B.E.; Greinix, H.; et al. Worldwide Network for Blood & Marrow Transplantation (WBMT) special article, challenges facing emerging alternate donor registries. Bone Marrow Transplant. 2019, 54, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Fatoki, R.A.; Koehn, K.; Kelkar, A.; Al Hadidi, S.; Mehra, N.; Mian, H.; Landgren, O.; Kazandjian, D.; Hoffman, J.; Sborov, D.W.; et al. Global Myeloma Trial Participation and Drug Access in the Era of Novel Therapies. JCO Glob. Oncol. 2022, 8, e2200119. [Google Scholar] [CrossRef] [PubMed]
- Ciftciler, R.; Haznedaroglu, I.C. Tailored tyrosine kinase inhibitor (TKI) treatment of chronic myeloid leukemia (CML) based on current evidence. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7787–7798. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gonzalez, P.; Boultbee, P.; Epstein, D. Novel Humanitarian Aid Program: The Glivec International Patient Assistance Program-Lessons Learned From Providing Access to Breakthrough Targeted Oncology Treatment in Low- and Middle-Income Countries. J. Glob. Oncol. 2015, 1, 37–45. [Google Scholar] [CrossRef]
- Umeh, C.A.; Garcia-Gonzalez, P.; Tremblay, D.; Laing, R. The survival of patients enrolled in a global direct-to-patient cancer medicine donation program: The Glivec International Patient Assistance Program (GIPAP). eClinicalMedicine 2020, 19, 100257. [Google Scholar] [CrossRef]
Region | Year | APC (95% CI) | Year | AAPC (95% CI) | Year | APC (95% CI) | Year | AAPC (95% CI) |
---|---|---|---|---|---|---|---|---|
Disability-Adjusted Life Years | Incidence | |||||||
East Asia and Pacific | 1999–2005 | −2.93 * (−3.56, −2.52) | 1999–2019 | −1.29 * (−1.42, −1.21) | 1999–2005 | −3.4 * (−3.8, −3.09) | 1999–2019 | −1.51 * (−1.59, −1.43) |
2005–2010 | −0.33 (−1.44, 0.7) | 2005–2010 | −0.59 (0.99, 0.23) | |||||
2010–2017 | −1.23 (−2.28, 0.92) | 2010–2015 | −1.77 * (2.58, 1.38) | |||||
2017–2019 | 1.04 (−0.59, 2.02) | 2015–2019 | 0.58 * (0.03, 1.47) | |||||
Europe and Central Asia | 1999–2013 | −4.32 * (−4.50, −4.17) | 1999–2019 | −3.34 * (−3.46, −3.24) | 1999–2013 | −4.23 * (−4.38, −4.1) | 1999–2019 | −3.16 * (−3.26, −3.08) |
2013–2019 | −1.02 * (−1.55, −0.2) | 2013–2019 | −0.63 (−1.11, 0.04) | |||||
Latin America and Caribbean | 1999–2003 | −1.54 * (−1.96, −0.82) | 1999–2019 | −2.6 * (−2.69, −2.51) | 1999–2003 | −1.55 * (−1.98, −0.88) | 1999–2019 | −2.24 * (−2.31, −2.16) |
2003–2006 | −4.79 * (−5.24, −3.84) | 2003–2006 | −4.66 * (−5.09, 3.83) | |||||
2006–2013 | −3.27 * (−3.61, −2.37) | 2006–2014 | −2.96 * (−3.15, −2.64) | |||||
2013–2019 | −1.42 * (−1.77, −0.68) | 2014–2019 | −0.14 (−0.53, 0.37) | |||||
Middle East and North Africa | 1999–2004 | −2.68 * (−3.24, −2.36) | 1999–2019 | −1.49 * (−1.56, −1.43) | 1999–2005 | −2.26 * (−2.33, −2.17) | 1999–2019 | −1.23 * (−1.26, −1.2) |
2004–2015 | −1.28 * (−1.64, −1.16) | 2005–2016 | −0.93 * (−0.99, −0.9) | |||||
2015–2019 | −0.6 (−1.04, 0.2) | 2016–2019 | −0.22 (−0.5, 0.21) | |||||
North America | 1999–2004 | −8.72 * (−9.37, −8.35) | 1999–2019 | −3.72 * (−3.8, −3.65) | 1999–2004 | −8.75 * (−9.67, −8.31) | 1999–2019 | −3.6 * (−3.69, −3.51) |
2004–2007 | −5.42 * (−7.26, −3.71) | 2004–2007 | −5.47 * (−7.41, −3.51) | |||||
2007–2012 | −2.77 * (−3.37, −2.36) | 2007–2012 | −2.56 * (−3.27, −1.04) | |||||
2012–2019 | 0.07 (−0.2, 0.46) | 2012–2019 | 0.33 * (0.02, 0.84) | |||||
South Asia | 1999–2004 | −1.99 * (−2.86, −1.48) | 1999–2019 | −0.9 * (−0.99, −0.8) | 1999–2004 | −4.59 * (−5.23, −4.16) | 1999–2019 | −2.21 * (−2.3, −2.12) |
2004–2011 | −0.22 (−0.5, 0.68) | 2004–2011 | −1.51 * (−1.73, −0.86) | |||||
2011–2014 | −2.36 * (−2.92, −1.36) | 2011–2014 | −3.01 * (−3.51, −2.15) | |||||
2014–2019 | 0.15 (−0.28, 1.11) | 2014–2019 | −0.29 (−0.69, 0.45) | |||||
Sub-Sahara Africa | 1999–2001 | −1.55 * (−2.2, −0.41) | 1999–2019 | −0.85 * (−0.92, −0.77) | 1999–2001 | −5.08 * (−5.7, −4.11) | 1999–2019 | −3.32 * (−3.37, −3.25) |
2001–2008 | 0.25 * (0.07, 0.97) | 2001–2007 | −2.84 * (−3.01, −2.29) | |||||
2008–2014 | −0.68 * (−1.04, −0.37) | 2007–2010 | −3.99 * (−4.29, −3.43) | |||||
2014–2019 | −2.32 * (−2.75, −2) | 2010–2019 | −3.03 * (−3.13, −2.79) |
Region | * IRs (95% CI) | * DALYs (95% CI) | Sites f, % (95% CI) | ** DALYs (%) | χ2 | p-Value |
---|---|---|---|---|---|---|
ECA | 3.0 (2.6, 3.6) | 13.2 (12.1,15.2) | 344, 45.6 (42, 49.1) | 11.7 (0, 31.1) | 4.8 | <0001 * |
NA | 1.7 (1.5, 2.0) | 10 (9.2,11.4) | 201, 26.6 (23.5, 29.8) | 3.5 (0, 14.6) | 2.8 | 0.0914 |
SAsia | 0.62 (0.51, 0.74) | 22.3 (18.5, 27) | 13, 1.7 (0.8, 2.7) | 39.6 (10, 69.3) | 67.8 | <0001 * |
MENA | 0.56 (0.40, 0.67) | 16.5 (11.3, 20.2) | 19, 2.5 (1.4, 3.7) | 7.2 (0, 23) | 0.9 | 0.3418 |
EAP | 0.45 (0.40, 0.53) | 5.3 (4.7, 6.3) | 121, 16 (13.4, 18.6) | 11.9 (0, 31.6) | 0.1 | 0.7199 |
SSA | 0.44 (0.32, 0.57) | 18.8 (13.5, 25.7) | 11, 1.5 (0.6, 2.3) | 20.1 (0, 44.3) | 21.2 | <0001 * |
LAC | 0.35 (0.30, 0.40) | 9.6 (8.6, 10.9) | 46, 6.1 (4.4, 7.8) | 6 (0, 20) | 0.0 | 0.9888 |
Low SDI | DALY | IR | Middle SDI | DALY | IR | High-Middle SDI | DALY | IR | High SDI | DALY | IR |
---|---|---|---|---|---|---|---|---|---|---|---|
(14 Approvals) | 2.6 × 105 | 0.56 | (76 Approvals) | 2.3 × 105 | 0.32 | (108 Approvals) | 1.4 × 105 | 0.96 | (178 Approvals) | 1.1 × 105 | 2.92 |
Ethiopia (2) | 8.4 × 104 | 1.85 | Albania (2) | 1.4 × 102 | 0.29 | * Argentina (5) | 4.3 × 103 | 0.39 | Aruba (2) | NR | NR |
Ivory Coast (2) | 3.5 × 103 | 0.33 | * Algeria (2) | 6.9 × 103 | 0.51 | Bahrain (5) | 3.6 × 103 | 0.95 | * Australia (5) | 2.6 × 103 | 1.88 |
Mali (2) | 2.1 × 103 | 0.22 | Armenia (2) | 2.5 × 102 | 0.32 | Bosnia-Herzegovina (1) | 5.1 × 102 | 0.80 | * Austria (5) | 1.3 × 103 | 4.88 |
Pakistan (2) | 5.5 × 104 | 0.60 | Azerbaijan (2) | 6.6 × 102 | 0.19 | * Bulgaria (5) | 1.0 × 103 | 0.76 | * Belgium (5) | 1.3 × 103 | 3.69 |
Senegal (2) | 1.7 × 103 | 0.29 | Belarus (3) | 3.6 × 103 | 2.62 | Chile (5) | 1.9 × 103 | 0.62 | Brunei (2) | 2.4 × 102 | 1.63 |
Tanzania (1) | 1.5 × 104 | 0.56 | Botswana (2) | 1.3 × 102 | 0.14 | Croatia (5) | 5.6 × 102 | 2.17 | * Canada (6) | 3.7 × 103 | 3.41 |
Togo (1) | 9.6 × 102 | 0.30 | * Brazil (4) | 1.7 × 104 | 0.28 | Georgia (2) | 4.7 × 102 | 0.42 | Curacao (2) | NR | NR |
Uganda (1) | 6.7 × 103 | 0.34 | * China (2) | 4.1 × 104 | 0.26 | * Greece (5) | 2.1 × 103 | 5.53 | Cyprus (5) | 6.0 × 101 | 1.28 |
Yemen (1) | 7.5 × 103 | 0.60 | * Colombia (5) | 5.4 × 103 | 0.44 | * Hungary (5) | 1.3 × 103 | 1.17 | * Czech Republic (5) | 1.1 × 103 | 1.48 |
Costa Rica (2) | 7.1 × 102 | 0.71 | * Israel (5) | 7.1 × 102 | 1.32 | * Denmark (5) | 7.1 × 102 | 2.74 | |||
Low-Middle SDI | DALY | IR | Cuba (1) | 3.0 × 103 | 1.35 | * Italy (4) | 9.2 × 103 | 6.74 | * Estonia (5) | 2.8 × 102 | 2.21 |
(39 Approvals) | 3.1 × 105 | 0.48 | Ecuador (3) | 2.0 × 103 | 0.36 | Jordan (4) | 2.7 × 102 | 0.07 | * Finland (5) | 4.5 × 102 | 1.41 |
Bangladesh (2) | 2.7 × 104 | 0.47 | * Egypt (3) | 1.6 × 104 | 0.46 | Kazakhstan (2) | 2.2 × 103 | 0.41 | * France (5) | 9.2 × 103 | 5.04 |
Cameroon (2) | 2.6 × 103 | 0.21 | Gabon (2) | 2.4 × 103 | 0.38 | * Lebanon (5) | 1.6 × 103 | 2.11 | * Germany (5) | 1.6 × 104 | 11.29 |
Dominican Republic (2) | 7.2 × 102 | 0.15 | Indonesia (3) | 1.9 × 104 | 0.22 | Macedonia (1) | 1.7 × 102 | 0.40 | * Hong Kong (4) | NR | NR |
El Salvador (2) | 3.5 × 102 | 0.19 | Iraq (2) | 5.2 × 103 | 0.36 | * Malaysia (3) | 5.3 × 103 | 0.54 | Iceland (3) | 2.3 × 101 | 2.80 |
Ghana (2) | 3.2 × 103 | 0.27 | Jamaica (2) | 4.1 × 103 | 0.47 | Mauritius (2) | 1.1 × 102 | 0.32 | * Ireland (5) | 3.6 × 102 | 3.40 |
Guatemala (2) | 7.5 × 102 | 0.13 | Kosovo (1) | NR | NR | Moldova (2) | 1.8 × 102 | 0.18 | * Japan (6) | 1.1 × 104 | 2.59 |
Honduras (2) | 1.4 × 103 | 0.46 | * México (5) | 1.1 × 104 | 0.29 | Montenegro (2) | 1.2 × 102 | 1.47 | * South Korea (4) | 1.3 × 103 | 1.65 |
* India (2) | 3.1 × 105 | 0.64 | Namibia (2) | 5.9 × 101 | 0.06 | * Oman (4) | 3.6 × 102 | 0.32 | Kuwait (3) | 3.6 × 102 | 0.25 |
Kenya (2) | 4.0 × 103 | 0.18 | * Panama (2) | 4.8 × 102 | 0.39 | * Poland (5) | 5.4 × 103 | 1.11 | * Latvia (4) | 3.4 × 102 | 1.28 |
Kyrgyzstan (1) | 3.6 × 102 | 0.16 | Paraguay (2) | 6.6 × 102 | 0.31 | * Portugal (5) | 1.3 × 103 | 2.81 | Liechtenstein (2) | NR | NR |
Maldives (2) | 3.1 × 101 | 0.25 | * Peru (4) | 2.3 × 103 | 0.22 | * Romania (5) | 1.4 × 103 | 0.41 | * Lithuania (5) | 4.8 × 102 | 0.95 |
Mongolia (1) | 2.7× 102 | 0.22 | * Philippines (3) | 1.0 × 104 | 0.25 | * Serbia (2) | 9.4 × 103 | 0.63 | Luxembourg (5) | 4.4 × 101 | 2.49 |
Morocco (3) | 2.9 × 103 | 0.27 | * South Africa (3) | 1.0 × 103 | 0.05 | * Spain (5) | 4.1 × 103 | 3.68 | Malta (5) | 5.3 × 101 | 2.85 |
Myanmar (1) | 4.8 × 103 | 0.25 | Syria (1) | 4.7 × 103 | 1.12 | Sri Lanka (2) | 1.4 × 103 | 0.23 | * New Zealand (3) | 4.2 × 102 | 1.47 |
Nicaragua (2) | 6.1 × 102 | 0.31 | * Thailand (4) | 9.5 × 103 | 0.49 | Trinidad and Tobago (2) | 1.8 × 102 | 0.42 | * Netherlands (5) | 1.3 × 103 | 3.41 |
Nigeria (2) | 2.0 × 104 | 0.22 | * Tunisia (1) | 1.1 × 103 | 0.41 | * Turkey (4) | 7.3 × 103 | 0.43 | * Norway (3) | 2.3 × 102 | 1.02 |
Palestine (1) | 5.5 × 102 | 0.33 | Turkmenistan (2) | 4.0 × 102 | 0.21 | * Ukraine (3) | 1.0 × 104 | 0.98 | Qatar (4) | 3.6 × 102 | 0.63 |
Sudan (2) | 7.6 × 103 | 0.46 | Uzbekistan (2) | 3.1 × 103 | 0.26 | Uruguay (3) | 5.8 × 102 | 0.76 | * Russia (5) | 2.3 × 104 | 0.85 |
Tajikistan (1) | 4.8 × 102 | 0.13 | Vietnam (2) | 9.2 × 103 | 0.32 | * Saudi Arabia (5) | 7.4 × 103 | 0.72 | |||
Venezuela (3) | 3.6 × 103 | 0.44 | * Singapore (4) | 3.3 × 102 | 1.18 | ||||||
Zimbabwe (2) | 7.8 × 102 | 0.12 | * Slovak Republic (5) | 4.2 × 102 | 0.65 | ||||||
Slovenia (5) | 3.5 × 102 | 3.86 | |||||||||
* Sweden (5) | 7.5 × 102 | 3.00 | |||||||||
* Switzerland (6) | 9.4 × 102 | 4.53 | |||||||||
* Taiwan (4) | 2.0 × 103 | 1.03 | |||||||||
* UAE (5) | 1.9 × 103 | 0.56 | |||||||||
* United Kingdom (5) | 5.9 × 103 | 2.61 | |||||||||
* USA (6) | 3.3 × 104 | 1.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casey, M.; Odhiambo, L.; Aggarwal, N.; Shoukier, M.; Islam, K.M.; Cortes, J. Global Trial Representation and Availability of Tyrosine Kinase Inhibitors for Treatment of Chronic Myeloid Leukemia. Cancers 2024, 16, 2838. https://doi.org/10.3390/cancers16162838
Casey M, Odhiambo L, Aggarwal N, Shoukier M, Islam KM, Cortes J. Global Trial Representation and Availability of Tyrosine Kinase Inhibitors for Treatment of Chronic Myeloid Leukemia. Cancers. 2024; 16(16):2838. https://doi.org/10.3390/cancers16162838
Chicago/Turabian StyleCasey, Mycal, Lorriane Odhiambo, Nidhi Aggarwal, Mahran Shoukier, K. M. Islam, and Jorge Cortes. 2024. "Global Trial Representation and Availability of Tyrosine Kinase Inhibitors for Treatment of Chronic Myeloid Leukemia" Cancers 16, no. 16: 2838. https://doi.org/10.3390/cancers16162838
APA StyleCasey, M., Odhiambo, L., Aggarwal, N., Shoukier, M., Islam, K. M., & Cortes, J. (2024). Global Trial Representation and Availability of Tyrosine Kinase Inhibitors for Treatment of Chronic Myeloid Leukemia. Cancers, 16(16), 2838. https://doi.org/10.3390/cancers16162838