Next Article in Journal
Microbial Inhibition of Fusarium Pathogens and Biological Modification of Trichothecenes in Cereal Grains
Next Article in Special Issue
Peripheral 5-HT3 Receptors Are Involved in the Antinociceptive Effect of Bunodosine 391
Previous Article in Journal
Effects of Continuously Feeding Diets Containing Cereal Ergot Alkaloids on Nutrient Digestibility, Alkaloid Recovery in Feces, and Performance Traits of Ram Lambs
Previous Article in Special Issue
G-Protein Coupled Receptors Targeted by Analgesic Venom Peptides
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessReview
Toxins 2017, 9(12), 406; https://doi.org/10.3390/toxins9120406

Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia

1
Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brasil, 1500, 05503-900 São Paulo, SP, Brazil
2
Department of Physics and Biophysics, São Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, s/n, 18618-689 Botucatu, SP, Brazil
*
Authors to whom correspondence should be addressed.
Received: 30 October 2017 / Revised: 13 December 2017 / Accepted: 16 December 2017 / Published: 19 December 2017
(This article belongs to the Special Issue Animal Venoms and Pain)
View Full-Text   |   Download PDF [1525 KB, uploaded 20 December 2017]   |  

Abstract

Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms. View Full-Text
Keywords: secretory phospholipases A2; catalytic activity; animal venoms; pain; analgesia secretory phospholipases A2; catalytic activity; animal venoms; pain; analgesia
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Share & Cite This Article

MDPI and ACS Style

Zambelli, V.O.; Picolo, G.; Fernandes, C.A.H.; Fontes, M.R.M.; Cury, Y. Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia. Toxins 2017, 9, 406.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Toxins EISSN 2072-6651 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top