Next Article in Journal / Special Issue
Alpha-Latrotoxin Rescues SNAP-25 from BoNT/A-Mediated Proteolysis in Embryonic Stem Cell-Derived Neurons
Previous Article in Journal
Inhibition of the Unfolded Protein Response by Ricin A-Chain Enhances Its Cytotoxicity in Mammalian Cells
Previous Article in Special Issue
Re-Assembled Botulinum Neurotoxin Inhibits CNS Functions without Systemic Toxicity
Article Menu

Export Article

Open AccessReview
Toxins 2011, 3(5), 469-488; doi:10.3390/toxins3050469

Botulinum Neurotoxins and Botulism: A Novel Therapeutic Approach

Laboratory for Research and Technology Development, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok-noi, Bangkok 10700, Thailand
*
Author to whom correspondence should be addressed.
Received: 8 April 2011 / Revised: 22 April 2011 / Accepted: 28 April 2011 / Published: 13 May 2011
(This article belongs to the Special Issue Development of Botulinum Toxin Drugs)
View Full-Text   |   Download PDF [278 KB, 16 May 2011; original version 13 May 2011]   |  

Abstract

Specific treatment is not available for human botulism. Current remedial mainstay is the passive administration of polyclonal antibody to botulinum neurotoxin (BoNT) derived from heterologous species (immunized animal or mouse hybridoma) together with supportive and symptomatic management. The antibody works extracellularly, probably by blocking the binding of receptor binding (R) domain to the neuronal receptors; thus inhibiting cellular entry of the holo-BoNT. The antibody cannot neutralize the intracellular toxin. Moreover, a conventional antibody with relatively large molecular size (150 kDa) is not accessible to the enzymatic groove and, thus, cannot directly inhibit the BoNT zinc metalloprotease activity. Recently, a 15–20 kDa single domain antibody (VHH) that binds specifically to light chain of BoNT serotype A was produced from a humanized-camel VH/VHH phage display library. The VHH has high sequence homology (>80%) to the human VH and could block the enzymatic activity of the BoNT. Molecular docking revealed not only the interface binding between the VHH and the toxin but also an insertion of the VHH CDR3 into the toxin enzymatic pocket. It is envisaged that, by molecular linking the VHH to a cell penetrating peptide (CPP), the CPP-VHH fusion protein would be able to traverse the hydrophobic cell membrane into the cytoplasm and inhibit the intracellular BoNT. This presents a novel and safe immunotherapeutic strategy for botulism by using a cell penetrating, humanized-single domain antibody that inhibits the BoNT by means of a direct blockade of the groove of the menace enzyme. View Full-Text
Keywords: botulinum neurotoxin; botulism; zinc metalloprotease; immunotherapy; serum therapy; therapeutic antibody; chimeric antibody; humanized antibody; single chain antibody variable fragment (ScFv); heavy chain antibody (HCAb); single domain antibody (sdAb); VH; VL; VHH; humanized-camel phage display library; nanobody; transbody; cell penetrating peptide (CPP); phage display botulinum neurotoxin; botulism; zinc metalloprotease; immunotherapy; serum therapy; therapeutic antibody; chimeric antibody; humanized antibody; single chain antibody variable fragment (ScFv); heavy chain antibody (HCAb); single domain antibody (sdAb); VH; VL; VHH; humanized-camel phage display library; nanobody; transbody; cell penetrating peptide (CPP); phage display
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Thanongsaksrikul, J.; Chaicumpa, W. Botulinum Neurotoxins and Botulism: A Novel Therapeutic Approach. Toxins 2011, 3, 469-488.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Toxins EISSN 2072-6651 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top