Evaluation of Olive Leaf Phenolic Compounds’ Gastrointestinal Stability Based on Co-Administration and Microencapsulation with Non-Digestible Carbohydrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microencapsulation of the Olive Leaf Phenolic-Rich Extract by Spray-Drying
2.3. Encapsulation Efficiency (%EE) Assesment
2.4. INFOGEST Static In Vitro Digestion
2.5. Bioactive Compound Extraction
2.6. Bioactive Compound Bioaccessibility
2.7. Bioactive Compound Characterization Using HPLC-MS
2.8. Data Processing
2.9. Statistical Analyses
3. Results and Discussion
3.1. Characterization of Olive Leaf Extract
3.2. Microencapsulation of Olive Leaf Extract by Spray-Drying
3.3. Influence of the Digestive Simulation of the Phenolic Profile
3.3.1. In Vitro Digestion of the Phenolic-Rich Extract
3.3.2. Gastrointestinal Behavior of the Phenolic Co-Administration with Inulin
3.3.3. Encapsulated Formulation
3.3.4. Effect of the Encapsulation on the Digestive Phenolic Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Nunes, M.A.; Pimentel, F.B.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Olive By-Products for Functional and Food Applications: Challenging Opportunities to Face Environmental Constraints. Innov. Food Sci. Emerg. Technol. 2016, 35, 139–148. [Google Scholar] [CrossRef]
- Otero, P.; Garcia-Oliveira, P.; Carpena, M.; Barral-Martinez, M.; Chamorro, F.; Echave, J.; Garcia-Perez, P.; Cao, H.; Xiao, J.; Simal-Gandara, J.; et al. Applications of By-Products from the Olive Oil Processing: Revalorization Strategies Based on Target Molecules and Green Extraction Technologies. Trends Food Sci. Technol. 2021, 116, 1084–1104. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 17 March 2021).
- Niaounakis, M.; Halvadakis, C.P. Olive Processing Waste Management: Literature Review and Patent Survey; Elsevier: Amsterdam, The Netherlands, 2006; Volume 498. [Google Scholar]
- Spinelli, R.; Picchi, G. Industrial Harvesting of Olive Tree Pruning Residue for Energy Biomass. Bioresour. Technol. 2010, 101, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Dauber, C.; Carreras, T.; González, L.; Gámbaro, A.; Valdés, A.; Ibañez, E.; Vieitez, I. Characterization and Incorporation of Extracts from Olive Leaves Obtained through Maceration and Supercritical Extraction in Canola Oil: Oxidative Stability Evaluation. LWT 2022, 160, 113274. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic Compounds in Olive Leaves: Analytical Determination, Biotic and Abiotic Influence, and Health Benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-Antioxidant Activity Relationship of Methoxy, Phenolic Hydroxyl, and Carboxylic Acid Groups of Phenolic Acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef] [PubMed]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) along with Their In Vivo Health Biochemical Properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Cardoso, S.M. Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-Inflammatory and Antitumoral Properties. Antioxidants 2020, 9, 814. [Google Scholar] [CrossRef]
- Číž, M.; Dvořáková, A.; Skočková, V.; Kubala, L. The Role of Dietary Phenolic Compounds in Epigenetic Modulation Involved in Inflammatory Processes. Antioxidants 2020, 9, 691. [Google Scholar] [CrossRef]
- Qabaha, K.; Al-Rimawi, F.; Qasem, A.; Naser, S.A. Oleuropein Is Responsible for the Major Anti-Inflammatory Effects of Olive Leaf Extract. J. Med. Food 2018, 21, 302–305. [Google Scholar] [CrossRef]
- Vezza, T.; Algieri, F.; Rodríguez-Nogales, A.; Garrido-Mesa, J.; Utrilla, M.P.; Talhaoui, N.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Rodríguez-Cabezas, M.E.; Monteleone, G.; et al. Immunomodulatory Properties of Olea Europaea Leaf Extract in Intestinal Inflammation. Mol. Nutr. Food Res. 2017, 61, 1601066. [Google Scholar] [CrossRef] [PubMed]
- Boy, F.R.; Casquete, R.; Martínez, A.; Córdoba, M.d.G.; Ruíz-Moyano, S.; Benito, M.J. Antioxidant, Antihypertensive and Antimicrobial Properties of Phenolic Compounds Obtained from Native Plants by Different Extraction Methods. Int. J. Environ. Res. Public Health 2021, 18, 2475. [Google Scholar] [CrossRef] [PubMed]
- Lammi, C.; Bellumori, M.; Cecchi, L.; Bartolomei, M.; Bollati, C.; Clodoveo, M.L.; Corbo, F.; Arnoldi, A.; Mulinacci, N. Extra Virgin Olive Oil Phenol Extracts Exert Hypocholesterolemic Effects through the Modulation of the LDLR Pathway: In Vitro and Cellular Mechanism of Action Elucidation. Nutrients 2020, 12, 1723. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Zheng, B.; Li, T.; Liu, R.H. Assessment of the Phenolic Profiles, Hypoglycemic Activity, and Molecular Mechanism of Different Highland Barley (Hordeum Vulgare L.) Varieties. Int. J. Mol. Sci. 2020, 21, 1175. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M.; Matthäus, B. A Review: Benefit and Bioactive Properties of Olive (Olea europaea L.) Leaves. Eur. Food Res. Technol. 2016, 243, 89–99. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Segura-Carretero, A.; del Mar Contreras, M. Phenolic Compounds as Natural and Multifunctional Anti-Obesity Agents: A Review. Crit. Rev. Food Sci. Nutr. 2017, 59, 1212–1229. [Google Scholar] [CrossRef] [PubMed]
- Ahangarpour, A.; Sayahi, M.; Sayahi, M. The Antidiabetic and Antioxidant Properties of Some Phenolic Phytochemicals: A Review Study. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 854–857. [Google Scholar] [CrossRef]
- Burge, K.; Gunasekaran, A.; Eckert, J.; Chaaban, H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int. J. Mol. Sci. 2019, 20, 1912. [Google Scholar] [CrossRef]
- Vrdoljak, J.; Kumric, M.; Vilovic, M.; Martinovic, D.; Tomic, I.J.; Krnic, M.; Ticinovic Kurir, T.; Bozic, J. Effects of Olive Oil and Its Components on Intestinal Inflammation and Inflammatory Bowel Disease. Nutrients 2022, 14, 757. [Google Scholar] [CrossRef]
- Yu, C.; Wang, D.; Yang, Z.; Wang, T. Pharmacological Effects of Polyphenol Phytochemicals on the Intestinal Inflammation via Targeting TLR4/NF-ΚB Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 6939. [Google Scholar] [CrossRef]
- Arangia, A.; Marino, Y.; Impellizzeri, D.; D’Amico, R.; Cuzzocrea, S.; Di Paola, R. Hydroxytyrosol and Its Potential Uses on Intestinal and Gastrointestinal Disease. Int. J. Mol. Sci. 2023, 24, 3111. [Google Scholar] [CrossRef] [PubMed]
- Motawea, M.H.; Elmaksoud, H.A.A.; Elharrif, M.G.; Desoky, A.A.E.; Ibrahimi, A. Evaluation of Anti-Inflammatory and Antioxidant Profile of Oleuropein in Experimentally Induced Ulcerative Colitis. Int. J. Mol. Cell. Med. 2020, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Fakhraei, N.; Abdolghaffari, A.H.; Delfan, B.; Abbasi, A.; Rahimi, N.; Khansari, A.; Rahimian, R.; Dehpour, A.R. Protective Effect of Hydroalcoholic Olive Leaf Extract on Experimental Model of Colitis in Rat: Involvement of Nitrergic and Opioidergic Systems. Phyther. Res. 2014, 28, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Muñoz-González, I.; Cueva, C.; Jiménez-Girón, A.; Sánchez-Patán, F.; Santos-Buelga, C.; Moreno-Arribas, M.V.; Bartolomé, B. A Survey of Modulation of Gut Microbiota by Dietary Polyphenols. BioMed Res. Int. 2015, 2015, 850902. [Google Scholar] [CrossRef] [PubMed]
- Mithul Aravind, S.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of Dietary Polyphenols on Gut Microbiota, Their Metabolites and Health Benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef]
- Friedman, M.; Jürgens, H.S. Effect of PH on the Stability of Plant Phenolic Compounds. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef]
- Paini, M.; Aliakbarian, B.; Casazza, A.A.; Lagazzo, A.; Botter, R.; Perego, P. Microencapsulation of Phenolic Compounds from Olive Pomace Using Spray Drying: A Study of Operative Parameters. LWT Food Sci. Technol. 2015, 62, 177–186. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Iwamoto, S. Encapsulation for Improving In Vitro Gastrointestinal Digestion of Plant Polyphenols and Their Applications in Food Products. Food Rev. Int. 2020, 38, 335–353. [Google Scholar] [CrossRef]
- Cedola, A.; Palermo, C.; Centonze, D.; Nobile, M.A.D.; Conte, A. Characterization and Bio-Accessibility Evaluation of Olive Leaf Extract-Enriched “Taralli” . Foods 2020, 9, 1268. [Google Scholar] [CrossRef]
- Mechi, D.; Baccouri, B.; Martín-Vertedor, D.; Abaza, L. Bioavailability of Phenolic Compounds in Californian-Style Table Olives with Tunisian Aqueous Olive Leaf Extracts. Molecules 2023, 28, 707. [Google Scholar] [CrossRef]
- Markopoulos, C.; Vertzoni, M.; Agalias, A.; Magiatis, P.; Reppas, C. Stability of Oleuropein in the Human Proximal Gut. J. Pharm. Pharmacol. 2010, 61, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Velderrain-Rodríguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C.Y.O.; Robles-Sánchez, M.; Astiazaran-García, H.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Phenolic Compounds: Their Journey after Intake. Food Funct. 2014, 5, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, L.F.; Ramirez, M.J.; Orrego, C.E.; Teixeira, J.A.; Mussatto, S.I. Encapsulation of Antioxidant Phenolic Compounds Extracted from Spent Coffee Grounds by Freeze-Drying and Spray-Drying Using Different Coating Materials. Food Chem. 2017, 237, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- González, E.; Gómez-Caravaca, A.M.; Giménez, B.; Cebrián, R.; Maqueda, M.; Parada, J.; Martínez-Férez, A.; Segura-Carretero, A.; Robert, P. Role of Maltodextrin and Inulin as Encapsulating Agents on the Protection of Oleuropein during In Vitro Gastrointestinal Digestion. Food Chem. 2020, 310, 125976. [Google Scholar] [CrossRef]
- Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour Encapsulation and Controlled Release—A Review. Int. J. Food Sci. Technol. 2006, 41, 1–21. [Google Scholar] [CrossRef]
- Beirão-da-Costa, S.; Duarte, C.; Bourbon, A.I.; Pinheiro, A.C.; Januário, M.I.N.; Vicente, A.A.; Beirão-da-Costa, M.L.; Delgadillo, I. Inulin Potential for Encapsulation and Controlled Delivery of Oregano Essential Oil. Food Hydrocoll. 2013, 33, 199–206. [Google Scholar] [CrossRef]
- Pierucci, S.; Klemeš, J.J.; Piazza, L.; Bakalis, S.; Pettinato, M.; Aliakbarian, B.; Casazza, A.A.; Perego, P. Encapsulation of Antioxidants from Spent Coffee Ground Extracts by Spray Drying. Chem. Eng. Trans. 2017, 57, 1219–1224. [Google Scholar] [CrossRef]
- Walz, M.; Hagemann, D.; Trentzsch, M.; Weber, A.; Henle, T. Degradation Studies of Modified Inulin as Potential Encapsulation Material for Colon Targeting and Release of Mesalamine. Carbohydr. Polym. 2018, 199, 102–108. [Google Scholar] [CrossRef]
- Wan, X.; Guo, H.; Liang, Y.; Zhou, C.; Liu, Z.; Li, K.; Niu, F.; Zhai, X.; Wang, L. The Physiological Functions and Pharmaceutical Applications of Inulin: A Review. Carbohydr. Polym. 2020, 246, 116589. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static In Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static In Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Jiménez, F.-J.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Lozano-Sánchez, J.; Oliver-Simancas, R.; Alañón, M.E.; Castangia, I.; Segura-Carretero, A.; Arráez-Román, D. Application of Response Surface Methodologies to Optimize High-Added Value Products Developments: Cosmetic Formulations as an Example. Antioxidants 2022, 11, 1552. [Google Scholar] [CrossRef]
- Duque-Soto, C.; Quirantes-Piné, R.; Borrás-Linares, I.; Segura-Carretero, A.; Lozano-Sánchez, J. Characterization and Influence of Static In Vitro Digestion on Bioaccessibility of Bioactive Polyphenols from an Olive Leaf Extract. Foods 2022, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- González, E.; Gómez-Caravaca, A.M.; Giménez, B.; Cebrián, R.; Maqueda, M.; Martínez-Férez, A.; Segura-Carretero, A.; Robert, P. Evolution of the Phenolic Compounds Profile of Olive Leaf Extract Encapsulated by Spray-Drying during In Vitro Gastrointestinal Digestion. Food Chem. 2019, 279, 40–48. [Google Scholar] [CrossRef] [PubMed]
- López de Lacey, A.M.; Giménez, B.; Pérez-Santín, E.; Faulks, R.; Mandalari, G.; López-Caballero, M.E.; Montero, P. Bioaccessibility of Green Tea Polyphenols Incorporated into an Edible Agar Film during Simulated Human Digestion. Food Res. Int. 2012, 48, 462–469. [Google Scholar] [CrossRef]
- Mehran, M.; Masoum, S.; Memarzadeh, M. Microencapsulation of Mentha Spicata Essential Oil by Spray Drying: Optimization, Characterization, Release Kinetics of Essential Oil from Microcapsules in Food Models. Ind. Crops Prod. 2020, 154, 112694. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Lozano-Sánchez, J.; de la Luz Cádiz-Gurrea, M.; Fernández-Ochoa, Á.; Arráez-Román, D.; Segura-Carretero, A. Spray-Drying Microencapsulation of Bioactive Compounds from Lemon Verbena Green Extract. Foods 2020, 9, 1547. [Google Scholar] [CrossRef]
- Saifullah, M.; McCullum, R.; Akanbi, T.O.; Van Vuong, Q. Encapsulation of Phenolic-Rich Lemon-Scented Tea Tree Extract in Lemon Pomace Powder. Food Hydrocoll. Health 2023, 4, 100157. [Google Scholar] [CrossRef]
- Yuasa, M.; Sumida, R.; Tanaka, Y.; Yoshizawa, M. Selective Encapsulation and Unusual Stabilization of Cis-Isomers by a Spherical Polyaromatic Cavity. Chem. A Eur. J. 2022, 28, e202104101. [Google Scholar] [CrossRef]
- García-Gurrola, A.; Rincón, S.; Escobar-Puentes, A.A.; Zepeda, A.; Martínez-Bustos, F. Microencapsulation of Red Sorghum Phenolic Compounds with Esterified Sorghum Starch as Encapsulant Materials by Spray Drying. Food Technol. Biotechnol. 2019, 57, 341–349. [Google Scholar] [CrossRef]
- Gonzalez-Ortega, R.; Di Mattia, C.D.; Pittia, P.; Natasa, P.U. Effect of Heat Treatment on Phenolic Composition and Radical Scavenging Activity of Olive Leaf Extract at Different PH Conditions: A Spectroscopic and Kinetic Study. J. Sci. Food Agric. 2023, 103, 2047–2056. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, E.; Brenes, M.; García, P.; Medina, E.; Romero, C. Oleuropein Hydrolysis in Natural Green Olives: Importance of the Endogenous Enzymes. Food Chem. 2016, 206, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Ahmad-Qasem, M.H.; Cánovas, J.; Barrajón-Catalán, E.; Carreres, J.E.; Micol, V.; García-Pérez, J.V. Influence of Olive Leaf Processing on the Bioaccessibility of Bioactive Polyphenols. J. Agric. Food Chem. 2014, 62, 6190–6198. [Google Scholar] [CrossRef] [PubMed]
- Martín-Vertedor, D.; Garrido, M.; Pariente, J.A.; Espino, J.; Delgado-Adámez, J. Bioavailability of Bioactive Molecules from Olive Leaf Extracts and Its Functional Value. Phyther. Res. 2016, 30, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Pimienta, J.; Martín-Vertedor, D.; Ramírez, R.; Delgado-Adámez, J. Pro-/Antioxidant and Antibacterial Activity of Olive Leaf Extracts According to Bioavailability of Phenolic Compounds. Emirates J. Food Agric. 2020, 32, 479–487. [Google Scholar] [CrossRef]
- Villalva, M.; Silvan, J.M.; Guerrero-Hurtado, E.; Gutierrez-Docio, A.; Hierro, J.N.D.; Alarcón-Cavero, T.; Prodanov, M.; Martin, D.; Martinez-Rodriguez, A.J. Influence of In Vitro Gastric Digestion of Olive Leaf Extracts on Their Bioactive Properties against H. pylori. Foods 2022, 11, 1832. [Google Scholar] [CrossRef]
- Gikas, E.; Papadopoulos, N.; Tsarbopoulos, A. Kinetic Study of the Acidic Hydrolysis of Oleuropein, the Major Bioactive Metabolite of Olive Oil. J. Liq. Chromatogr. Relat. Technol. 2007, 29, 497–508. [Google Scholar] [CrossRef]
- Yuan, J.J.; Wang, C.Z.; Ye, J.Z.; Tao, R.; Zhang, Y.S. Enzymatic Hydrolysis of Oleuropein from Olea Europea (Olive) Leaf Extract and Antioxidant Activities. Molecules 2015, 20, 2903–2921. [Google Scholar] [CrossRef]
- Polzonetti, V.; Natalini, P.; Vincenzetti, S.; Vita, A.; Pucciarelli, S. Modulatory Effect of Oleuropein on Digestive Enzymes. In Olives and Olive Oil in Heath and Disease Prevention, 1st ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: San Diego, CA, USA, 2010; pp. 1327–1333. [Google Scholar] [CrossRef]
- Guo, J.; Gan, C.; Cheng, B.; Cui, B.; Yi, F. Exploration of Binding Mechanism of Apigenin to Pepsin: Spectroscopic Analysis, Molecular Docking, Enzyme Activity and Antioxidant Assays. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 290, 122281. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J. Food Sci. 2011, 76, R6–R15. [Google Scholar] [CrossRef] [PubMed]
- Suharoschi, R.; Pop, O.L.; Vlaic, R.A.; Muresan, C.I.; Muresan, C.C.; Cozma, A.; Sitar-Taut, A.V.; Vulturar, R.; Heghes, S.C.; Fodor, A.; et al. Dietary Fiber and Metabolism. In Dietary Fiber: Properties, Recovery, and Applications, 1st ed.; Galanakis, C.M., Ed.; Academic Press: San Diego, CA, USA, 2019; pp. 59–77. [Google Scholar] [CrossRef]
- Jakobek, L.; Matić, P. Non-Covalent Dietary Fiber—Polyphenol Interactions and Their Influence on Polyphenol Bioaccessibility. Trends Food Sci. Technol. 2019, 83, 235–247. [Google Scholar] [CrossRef]
- Tomas, M.; Rocchetti, G.; Ghisoni, S.; Giuberti, G.; Capanoglu, E.; Lucini, L. Effect of Different Soluble Dietary Fibres on the Phenolic Profile of Blackberry Puree Subjected to In Vitro Gastrointestinal Digestion and Large Intestine Fermentation. Food Res. Int. 2020, 130, 108954. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Interactions between Cell Wall Polysaccharides and Polyphenols. Crit. Rev. Food Sci. Nutr. 2017, 58, 1808–1831. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L. Interactions of Polyphenols with Carbohydrates, Lipids and Proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Regolo, L.; Alvarez-Suarez, J.M.; Navarro-Hortal, M.D.; Xiao, J.; Quiles, J.L.; Battino, M.; Giampieri, F. The Reciprocal Interaction between Polyphenols and Other Dietary Compounds: Impact on Bioavailability, Antioxidant Capacity and Other Physico-Chemical and Nutritional Parameters. Food Chem. 2022, 375, 131904. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Silva, E.K.; Arruda, H.S.; Freitas, M.Q.; Pastore, G.M.; Meireles, M.A.A.; Cruz, A.G. How Does the Degree of Inulin Polymerization Affect the Bioaccessibility of Bioactive Compounds from Soursop Whey Beverage during In Vitro Gastrointestinal Digestion? Food Hydrocoll. 2020, 101, 105511. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Alves Filho, E.d.G.; Karolina de Araújo Barroso, M.; de Fátima Dantas Linhares, M.; Rabelo, M.C.; Silva, L.M.A.e.; Sousa de Brito, E.; Wurlitzer, N.J.; Rodrigues Pereira, E.P.; Ferreira, B.M.; et al. Protective Effect of Inulin on Thermally Treated Acerola Juice: In Vitro Bioaccessibility of Bioactive Compounds. Food Biosci. 2021, 41, 101018. [Google Scholar] [CrossRef]
- Tomas, M.; Beekwilder, J.; Hall, R.D.; Diez Simon, C.; Sagdic, O.; Capanoglu, E. Effect of Dietary Fiber (Inulin) Addition on Phenolics and In Vitro Bioaccessibility of Tomato Sauce. Food Res. Int. 2018, 106, 129–135. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, Z.; Chen, Z.; Lei, D.; Li, S.; Zhu, Z.; Barba, F.J.; Cheng, S. Combination with Litchi Procyanidins under PEF Treatment Alters the Physicochemical and Processing Properties of Inulin. Food Chem. X 2023, 18, 100635. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Inulin-Type Fructans: Functional Food Ingredients. J. Nutr. 2007, 137, 2493–2502. [Google Scholar] [CrossRef] [PubMed]
- Barclay, T.; Ginic-Markovic, M.; Cooper, P.; Petrovsky, N. Inulin—A Versatile Polysaccharide with Multiple Pharmaceutical and Food Chemical Uses. J. Excipients Food Chem. 2010, 1, 27–50. [Google Scholar]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, Health Benefits and Food Applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Piazza, C.; Privitera, M.G.; Melilli, B.; Incognito, T.; Marano, M.R.; Leggio, G.M.; Roxas, M.A.; Drago, F. Influence of Inulin on Plasma Isoflavone Concentrations in Healthy Postmenopausal Women. Am. J. Clin. Nutr. 2007, 86, 775–780. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Serrano, J.; Tabernero, M.; Arranz, S.; Díaz-Rubio, M.E.; García-Diz, L.; Goñi, I.; Saura-Calixto, F. Bioavailability of Phenolic Antioxidants Associated with Dietary Fiber: Plasma Antioxidant Capacity after Acute and Long-Term Intake in Humans. Plant Foods Hum. Nutr. 2009, 64, 102–107. [Google Scholar] [CrossRef]
- Tamura, M.; Nakagawa, H.; Tsushida, T.; Hirayama, K.; Itoh, K. Effect of Pectin Enhancement on Plasma Quercetin and Fecal Flora in Rutin-Supplemented Mice. J. Food Sci. 2007, 72, S648–S651. [Google Scholar] [CrossRef]
Peak | RT (min) | Proposed Compound | Molecular Formula | m/z | Concentration (%) |
---|---|---|---|---|---|
1 | 9.08 | Hydroxytyrosol glucoside | C14H20O8 | 315.1108 | 0.107 ± 0.008 |
2 | 10.01 | Hydroxytyrosol | C8H10O3 | 153.059 | 1.0 ± 0.1 |
3 | 11.61 | Oleoside/Secologanoside isomer 1 | C16H22O11 | 389.1135 | 0.26 ± 0.03 |
4 | 15.51 | Oleoside/Secologanoside isomer 2 | C16H22O11 | 389.1135 | 0.10 ± 0.02 |
5 | 18.00 | Verbascoside | C29H36O15 | 623.199 | 0.67 ± 0.06 |
6 | 19.37 | Luteolin-7-O-glucoside | C21H20O11 | 447.095 | 1.5 ± 0.1 |
7 | 19.81 | Oleuropein diglucoside isomer 1 | C31H42O18 | 701.231 | 0.38 ± 0.04 |
8 | 21.68 | Oleuropein diglucoside isomer 2 | C31H42O18 | 701.231 | 0.78 ± 0.01 |
9 | 23.19 | Luteolin glucoside isomer | C21H20O11 | 447.095 | 0.28 ± 0.03 |
10 | 25.72 | Oleuropein | C25H32O13 | 539.181 | 48 ± 1 |
11 | 27.24 | Oleuropein isomer | C25H32O13 | 539.181 | 4.9 ± 0.2 |
12 | 29.57 | Ligstroside | C25H32O12 | 523.182 | 0.89 ± 0.04 |
13 | 31.75 | Oleuropein aglycone | C19H22O8 | 377.1223 | 0.24 ± 0.02 |
Run | T (°C) | E:EA | %EE HT | %EE OLE | ||
---|---|---|---|---|---|---|
Exp. | Pred. | Exp. | Pred. | |||
1 | 195.25 | 2.50 | 66.68 | 62.17 | 64.96 | 64.33 |
2 | 134.75 | 2.50 | 69.82 | 65.77 | 67.62 | 61.99 |
3 | 165.00 | 2.50 | 60.73 | 65.49 | 72.27 | 60.49 |
4 | 165.00 | 0.69 | 8.15 | 5.28 | 13.73 | 9.31 |
5 | 190.00 | 4.00 | 80.35 | 81.11 | 70.23 | 70.22 |
6 | 140.00 | 1.00 | 10.77 | 16.27 | 13.72 | 18.31 |
7 | 165.00 | 2.50 | 67.12 | 65.49 | 49.10 | 60.49 |
8 | 165.00 | 2.50 | 65.21 | 65.49 | 53.08 | 60.49 |
9 | 190.00 | 1.00 | 5.24 | 9.02 | 26.18 | 27.74 |
10 | 165.00 | 4.32 | 81.89 | 81.77 | 71.62 | 69.78 |
11 | 140.00 | 4.00 | 81.33 | 81.81 | 72.75 | 75.77 |
12 | 165.00 | 2.50 | 64.32 | 65.49 | 64.14 | 60.49 |
Source | Encapsulation Efficiency | |
---|---|---|
HT | OLE | |
p-Value | p-Value | |
Model | 0.000 a | 0.002 a |
X1: Temperature | 0.2398 | 0.824 |
X2: E:EA ratio | 0.000 a | 0.008 a |
X1 X2 | 0.482 | 0.744 |
0.458 | 0.529 | |
0.00 a | 0.068 a | |
Lack-of-fit | 0.058 | 0.844 |
R2 | 0.98 | 0.93 |
Compound | Encapsulation Efficiency (%) |
---|---|
Hydroxytyrosol glucoside | 79.91 |
Hydroxytyrosol | 80.44 |
Oleoside/Secologanoside isomer 1 | 76.96 |
Oleoside/Secologanoside isomer 2 | 58.70 |
Verbascoside | 73.94 |
Luteolin-7-O-glucoside | 72.14 |
Oleuropein diglucoside isomer 1 | 70.88 |
Oleuropein diglucoside isomer 2 | 72.94 |
Luteolin glucoside isomer | 70.78 |
Oleuropein | 79.45 |
Oleuropein isomer | 67.38 |
Ligstroside | 66.40 |
Oleuropein aglycone | 70.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque-Soto, C.; Leyva-Jiménez, F.J.; Quirantes-Piné, R.; López-Bascón, M.A.; Lozano-Sánchez, J.; Borrás-Linares, I. Evaluation of Olive Leaf Phenolic Compounds’ Gastrointestinal Stability Based on Co-Administration and Microencapsulation with Non-Digestible Carbohydrates. Nutrients 2024, 16, 93. https://doi.org/10.3390/nu16010093
Duque-Soto C, Leyva-Jiménez FJ, Quirantes-Piné R, López-Bascón MA, Lozano-Sánchez J, Borrás-Linares I. Evaluation of Olive Leaf Phenolic Compounds’ Gastrointestinal Stability Based on Co-Administration and Microencapsulation with Non-Digestible Carbohydrates. Nutrients. 2024; 16(1):93. https://doi.org/10.3390/nu16010093
Chicago/Turabian StyleDuque-Soto, Carmen, Francisco Javier Leyva-Jiménez, Rosa Quirantes-Piné, María Asunción López-Bascón, Jesús Lozano-Sánchez, and Isabel Borrás-Linares. 2024. "Evaluation of Olive Leaf Phenolic Compounds’ Gastrointestinal Stability Based on Co-Administration and Microencapsulation with Non-Digestible Carbohydrates" Nutrients 16, no. 1: 93. https://doi.org/10.3390/nu16010093