The Relevance of Thiamine Evaluation in a Practical Setting
Abstract
:1. Introduction
2. Clinical Implications of Thiamine Deficiency
2.1. Dry Beriberi, Wernicke’s Encephalopathy and Other Neurological Conditions
2.1.1. Wernicke’s Encephalopathy
2.1.2. Korsakoff’s Syndrome
2.1.3. Marchiafava-Bignami Syndrome
2.1.4. Alzheimer’s Disease (AD)
- (1)
- (2)
- Glucose metabolism: it is diminished both in AD patients and in those affected by thiamine deficiency. The metabolism of glucose in the brain is very high and it requires thiamine for critical processes. The sensitivity of the brain to thiamine deficiency could be explained by the fact that the human brain represents 2% of the body mass, but it consumes about 20% of the total glucose intake. Additionally, glucose in the brain is a substrate for the synthesis of neurotransmitters such as acetylcholine and glutamate [50,51,52]. Thiamine acts also as coenzyme activities for the mitochondrial enzymes [alpha]-ketoglutarate dehydrogenase and pyruvate dehydrogenase, both involved in glucose metabolism.
- (3)
- (4)
- Studies in animal models demonstrated that thiamine deficiency could play an important role in AD pathophysiology. It produces deficit in the cholinergic system [55], induces excess glutamate release and selective cell death in the submedial thalamic nucleus [56,57,58], exacerbates the formation of the plaques and also increases the phosphorylation of tau [59,60].
- (5)
- (6)
2.1.5. Depression
2.1.6. Polineuropathy
2.2. Wet Beriberi
2.2.1. Chronic Form
2.2.2. Shoshin Beriberi
3. Other Clinical Conditions Related to Thiamine Deficiency
3.1. Diabetes Mellitus (DM)
3.2. Immune System
3.3. Endothelial Function
3.4. Cerebrovascular Diseases
4. Thiamine Supplementation and Other Nutrients
5. Neuroimaging
6. Risk of Thiamine Deficiency in Upper Gastrointestinal (GI) Surgery Patients
Causes of Thiamine Deficiency | |||
---|---|---|---|
Poor Intake | Poor Absorption | Increased Loss | Increased Utilization |
Diets primarily high in polished rice/processed grains | Malnutrition | Diarrhea | Pregnancy |
Chronic alcoholism | Gastric bypass surgery | Hyperemesis (gravida rum or not) | Lactation |
Parental nutritional without adequate thiamine supplementation | Malabsorption syndrome | Diuretic use | Hyperthyroidism |
Gastric bypass surgery | Renal replacement therapy | Refeeding syndrome |
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Whitfield, K.C.; Bourassa, M.W. Thiamine deficiency disorders: Diagnosis, prevalence, and a roadmap for global control programs. Ann. N. Y. Acad. Sci. 2018, 1430, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Najjar, V.A.; Holt, E. The biosynthesis of thiamine in man and its implications in human nutrition. J. Am. Med. Assoc. 1943, 123, 683–684. [Google Scholar] [CrossRef]
- Tallaksen, C.M.E.; Sande, S.A.; Bøhmer, T.; Bell, H.; Karlsen, J. Kinetics of thiamin and thiamin phosphate esters in human blood, plasma and urine after 50 mg intravenously or orally. Eur. J. Clin. Pharmacol. 1993, 44, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Eshak, E.S.; Arafa, A.E. Thiamine deficiency and cardiovascular disorders. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 965–972. [Google Scholar] [CrossRef]
- Lonsdale, D. A review of the biochemestry, metabolism and clinical benefits of thiamine and its derivates. Evid. Based Complement. Altern. Med. 2006, 3, 49–59. [Google Scholar] [CrossRef]
- Kaidar-Person, O.; Person, B. Nutritional deficiencies in morbidly obese patients: A newform of malnutrition? Part A Vitamins. Obes. Surg. 2008, 18, 870–876. [Google Scholar] [CrossRef]
- Flodin, N.W. Thiamine (vitamin B1). In Current Topics in Nutrition and Disease; Alan, R., Ed.; Liss Inc.: New York, NY, USA, 1988; pp. 103–116. [Google Scholar]
- Davis, R.E.; Icke, G.C. Clinical Chemistry of Thiamin. Adv. Appl. Microbiol. 1983, 23, 93–140. [Google Scholar] [CrossRef]
- Kennedy, A.R. The Potential Role of Thiamine in the Pathogenesis and Treatment of Alzheimer’s Disease. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2001. [Google Scholar]
- Berner, L.A.; Keast, D.R.; Bailey, R.L.; Dwyer, J.T. Fortified Foods Are Major Contributors to Nutrient Intakes in Diets of US Children and Adolescents. J. Acad. Nutr. Diet. 2014, 114, 1009–1022. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Itokawa, Y.; Fujiwara, M. Cooking Losses of Thiamin in Food and Its Nutritional Significance. J. Nutr. Sci. Vitaminol. 1990, 36, S17–S24. [Google Scholar] [CrossRef]
- Thurnham, D. Thiamin: Physiology. Encycl. Hum. Nutr. 2013, 4, 274–279. [Google Scholar] [CrossRef]
- Khounnorath, S.; Chamberlain, K.; Taylor, A.M.; Soukaloun, D.; Mayxay, M.; Lee, S.J.; Phengdy, B.; Luangxay, K.; Sisouk, K.; Soumphonphakdy, B.; et al. Clinically Unapparent Infantile Thiamin Deficiency in Vientiane, Laos. PLoS Negl. Trop. Dis. 2011, 5, e969. [Google Scholar] [CrossRef] [PubMed]
- Moyo, A.A.; Bimbo, F.M.; Adeyoyin, K.M.; Nnaemeka, A.V.; Oluwatoyin, G.; Oladeji, A.V. Seasonal ataxia: A case report of a disappearing disease. Afr. Heal. Sci. 2014, 14, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Sriram, K.; Manzanares, W.; Joseph, K. Thiamine in Nutrition Therapy. Nutr. Clin. Pract. 2012, 27, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Zenuk, C.; Healey, J.; Donnelly, J.; Vaillancourt, R.; Almalki, Y.; Smith, S. Thiamine deficiency in congestive heart failure patients receiving long term furosemide therapy. Can. J. Clin. Pharmacol. 2003, 10, 184–188. [Google Scholar] [PubMed]
- Bugiardini, E.; Pope, S.; Feichtinger, R.G.; Poole, O.V.; Pittman, A.M.; Woodward, C.E.; Heales, S.J.; Quinlivan, R.; Houlden, H.; Mayr, J.A.; et al. Utility of Whole Blood Thiamine Pyrophosphate Evaluation in TPK1-Related Diseases. J. Clin. Med. 2019, 8, 991. [Google Scholar] [CrossRef] [Green Version]
- Marcé-Grau, A.; Sánchez, L.M.; Baide-Mairena, H.; Ortigoza-Escobar, J.D.; Pérez-Dueñas, B. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies. J. Inherit. Metab. Dis. 2019, 42, 581–597. [Google Scholar] [CrossRef]
- Jungtrakoon, P.; Shirakawa, J.; Buranasupkajorn, P.; Gupta, M.K.; De Jesus, D.F.; Pezzolesi, M.G.; Panya, A.; Hastings, T.; Chanprasert, C.; Mendonca, C.; et al. Loss-of-Function Mutation in Thiamine Transporter 1 in a Family With Autosomal Dominant Diabetes. Diabetes 2019, 68, 1084–1093. [Google Scholar] [CrossRef] [Green Version]
- Tabarki, B.; Alfadhel, M. SLC19A3 Gene Defects Sorting the Phenotype and Acronyms: Review. Neuropediatrics 2017, 49, 083–092. [Google Scholar] [CrossRef]
- Schänzer, A.; Döring, B.; Ondrouschek, M.; Goos, S.; Garvalov, B.K.; Geyer, J.; Acker, T.; Neubauer, B.; Hahn, A. Stress-Induced Upregulation of SLC19A3 is Impaired in Biotin-Thiamine-Responsive Basal Ganglia Disease. Brain Pathol. 2014, 24, 270–279. [Google Scholar] [CrossRef]
- Bottega, R.; Perrone, M.D.; Vecchiato, K.; Taddio, A.; Sabui, S.; Pecile, V.; Said, H.M.; Faletra, F. Functional analysis of the third identified SLC25A19 mutation causative for the thiamine metabolism dysfunction syndrome 4. J. Hum. Genet. 2019, 64, 1075–1081. [Google Scholar] [CrossRef]
- Ortigoza-Escobar, J.D.; Alfadhel, M.; Molero-Luis, M.; Darin, N.; Spiegel, R.; De Coo, I.F.I.F.; Gerards, M.; Taylor, R.W.; Artuch, R.; Nashabat, M.; et al. Thiamine deficiency in childhood with attention to genetic causes: Survival and outcome predictors. Ann. Neurol. 2017, 82, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Bettendorff, L.; Wins, P. Thiamin diphosphate in biological chemistry: New aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors. FEBS J. 2009, 276, 2917–2925. [Google Scholar] [CrossRef] [PubMed]
- Manzetti, S.; Zhang, J.; Van Der Spoel, D. Thiamin Function, Metabolism, Uptake, and Transport. Biochemistry 2014, 53, 821–835. [Google Scholar] [CrossRef]
- Talwar, D.; Davidson, H.; Cooney, J.; Jo’Reilly, D.S. Vitamin B1 Status Assessed by Direct Measurement of Thiamin Pyrophosphate in Erythrocytes or Whole Blood by HPLC: Comparison with Erythrocyte Transketolase Activation Assay. Clin. Chem. 2000, 46, 704–710. [Google Scholar] [CrossRef] [Green Version]
- FAO; World Health Organization. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2005; pp. 1–20. [Google Scholar]
- U.S. Department of Agriculture; Agricultural Research Service. USDA National Nutrient Database for Standard Reference; Release 24; U.S. Department of Agriculture: Washington, DC, USA, 2011.
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione (INRAN), Stazione Sperimentale Industria delle Conserve Alimentari (SSICA). Available online: https://www.crea.gov.it/web/alimenti-e-nutrizione/banche-dati (accessed on 6 July 2020).
- Hawk, A. The great disease enemy, Kak’ke (beriberi) and the Imperial Japanese Army. Mil. Med. 2006, 171, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Federico, P.; Mullin, S.; Colombo, C.; Viganò, S.; Bet, L. A case of Wernicke’s encephalopathy due to oesophageal achalasia. Neurol. Sci. 2012, 34, 799–800. [Google Scholar] [CrossRef]
- Gehrer, S.; Kern, B. Fewer nutrient deficiencies after laparoscopic sleeve gastrectomythan after laparoscopic Roux-Y-gastric bypass (LRYGB) a pro-spective study. Obes. Surg. 2010, 20, 447–453. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, A. Wernicke encephalopathy after obesity surgery: A systematic review. Neurology 2007, 68, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.A.; Balcer, L.J.; Galetta, S.L. The Neurological Complications of Nutritional Deficiency following Bariatric Surgery. J. Obes. 2012, 2012, 608534. [Google Scholar] [CrossRef] [Green Version]
- Davies, D.J.; Baxter, J.M. Nutritional deficiencies after bariatric surgery. Obes. Surg. 2007, 17, 1150–1158. [Google Scholar] [CrossRef]
- Galvin, R.; Bråthen, G.; Ivashynka, A.; Hillbom, M.; Tanasescu, R.; Leone, M. EFNS guidelines for diagnosis, therapy and prevention of Wernicke encephalopathy. Eur. J. Neurol. 2010, 17, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Caine, D.; Halliday, G.; Kril, J.J.; Harper, C.G. Operational criteria for the classification of chronic alcoholics: Identification of Wernicke’s encephalopathy. J. Neurol. Neurosurg. Psychiatry 1997, 62, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Kopelman, M.D.; Thomson, A.D.; Guerrini, I.; Marshall, E.J. The Korsakoff Syndrome: Clinical Aspects, Psychology and Treatment. Alcohol Alcohol. 2009, 44, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Harper, C.; Dixon, G.; Sheedy, D.; Garrick, T. Neuropathological alterations in alcoholic brains. Studies arising from the New South Wales Tissue Resource Centre. Prog. Neuro-Psychopharmacol. Boil. Psychiatry 2003, 27, 951–961. [Google Scholar] [CrossRef]
- Arts, N.J.; Walvoort, S.J.; Kessels, R.P. Korsakoff’s Syndrome: A Critical Review. Neuropsychiatr. Dis. Treat. 2017, 13, 2875–2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchiafava, E.; Bignami, A. Sopra un’alterazione del corpo calloso osservata in soggetti alcoolisti. Riv. Patol. Nerv. Ment. 1903, 8, 544–549. [Google Scholar]
- Hillbom, M.; Saloheimo, P.; Fujioka, S.; Wszolek, Z.K.; Juvela, S.; Leone, M. Diagnosis and management of Marchiafava-Bignami disease: A review of CT/MRI confirmed cases. J. Neurol. Neurosurg. Psychiatry 2013, 85, 168–173. [Google Scholar] [CrossRef]
- Fernandes, L.M.P.; Bezerra, F.R.; Monteiro, M.C.; Silva, M.L.; De Oliveira, F.R.; Lima, R.R.; A Fontes-Júnior, E.; Maia, C.S.F. Thiamine deficiency, oxidative metabolic pathways and ethanol-induced neurotoxicity: How poor nutrition contributes to the alcoholic syndrome, as Marchiafava–Bignami disease. Eur. J. Clin. Nutr. 2017, 71, 580–586. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Cummings, J.L.; DeKosky, S.T.; Barberger-Gateau, P.; Delacourte, A.; Frisoni, G.; Fox, N.C.; Galasko, D.; et al. Revising the definition of Alzheimer’s disease: A new lexicon. Lancet Neurol. 2010, 9, 1118–1127. [Google Scholar] [CrossRef]
- Sperling, R.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.E.; Hirsch, J.A.; Fonzetti, P.; Jordan, B.D.; Cirio, R.T.; Elder, J.; Jordon, B.D. Vitamin B1 (thiamine) and dementia. Ann. N. Y. Acad. Sci. 2016, 1367, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, H.; Zhang, Y.-X.; Nakamura, S. The effects of thiamin and its phosphate esters on dopamine release in the rat striatum. Neurosci. Lett. 1993, 158, 229–231. [Google Scholar] [CrossRef]
- Eder, L.; Hirt, L.; Dunant, Y. Possible involvement of thiamine in acetylcholine release. Nature 1976, 264, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, A.V.; Gnatenko, V.M.; Vladimirova, I.A. Effect of thiamine on neuromuscular transmission in smooth muscles. Neurophysiology 1994, 26, 370–377. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog. Neurobiol. 2013, 108, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Perrin, R.J.; Fagan, A.M.; Holtzman, D.M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 2009, 461, 916–922. [Google Scholar] [CrossRef]
- Kopelman, M.D.; Lasserson, D.; Marsden, P.; Stanhope, N.; Stevens, T.; Bello, F.; Kingsley, D.; Colchester, A.; Kopelman, M.D. FDG-PET Findings in the Wernicke-Korsakoff Syndrome. Cortex 2003, 39, 1027–1045. [Google Scholar] [CrossRef]
- Gibson, G.E.; Sheu, K.F.; Blass, J.P.; Baker, A.; Carlson, K.C.; Harding, B.; Perrino, P. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch. Neurol. 1988, 45, 836–840. [Google Scholar] [CrossRef]
- Bubber, P.; Haroutunian, V.; Fisch, G.; Blass, J.P.; Gibson, G.E. Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications. Ann. Neurol. 2005, 57, 695–703. [Google Scholar] [CrossRef]
- Barclay, L.L.; Gibson, G.E.; Blass, J.P. Impairment of behavior and acetylcholine metabolism in thiamine deficiency. J. Pharmacol. Exp. Ther. 1981, 217, 537–543. [Google Scholar]
- Langlais, P.J.; Zhang, S.X. Extracellular Glutamate Is Increased in Thalamus during Thiamine Deficiency-Induced Lesions and Is Blocked by MK-801. J. Neurochem. 1993, 61, 2175–2182. [Google Scholar] [CrossRef] [PubMed]
- Hazell, A.S.; Butterworth, R.F.; Hakim, A.M. Cerebral Vulnerability Is Associated with Selective Increase in Extracellular Glutamate Concentration in Experimental Thiamine Deficiency. J. Neurochem. 1993, 61, 1155–1158. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.J.; Gibson, G.E. Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism. Neurochem. Int. 2004, 45, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Karuppagounder, S.S.; Xu, H.; Shi, Q.; Chen, L.H.; Pedrini, S.; Pechman, D.; Baker, H.; Beal, M.F.; Gandy, S.E.; Gibson, G.E. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model. Neurobiol. Aging 2009, 30, 1587–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Yang, G.; Li, W.; Fan, Z.; Sun, A.; Luo, J.; Ke, Z.-J. Thiamine deficiency increases β-secretase activity and accumulation of β-amyloid peptides. Neurobiol. Aging 2011, 32, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Volvert, M.-L.; Seyen, S.; Piette, M.; Evrard, B.; Gangolf, M.; Plumier, J.-C.; Bettendorff, L. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol. 2008, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Gong, N.; Zhao, J.; Yu, Z.; Gu, F.; Chen, J.; Sun, X.; Zhao, L.; Yu, M.; Xu, Z.; et al. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 2010, 133 Pt 5, 1342–1351. [Google Scholar] [CrossRef]
- Perez-Pineiro, R.; Bjorndahl, T.C.; Berjanskii, M.V.; Hau, D.; Li, L.; Huang, A.; Lee, R.; Gibbs, E.; Ladner-Keay, C.L.; Dong, Y.W.; et al. The prion protein binds thiamine. FEBS J. 2011, 278, 4002–4014. [Google Scholar] [CrossRef]
- Huang, H.-M.; Chen, H.-L.; Gibson, G.E. Thiamine and Oxidants Interact to Modify Cellular Calcium Stores. Neurochem. Res. 2010, 35, 2107–2116. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J.A.; Gibson, G.E. Thiamin antagonists and the release of acetylcholine and norepinephrine from brain slices. Biochem. Pharmacol. 1984, 33, 2325–2327. [Google Scholar] [CrossRef]
- Plaitakis, A.; Hwang, E.C.; Woert, M.H.; Szilagyi, P.E.; Berl, S. Effect of thiamine deficiency on brain and neurotransmitter system. Ann. N. Y. Acad. Sci. 1982, 378, 367–381. [Google Scholar] [CrossRef]
- Singleton, C.; Martin, P. Molecular Mechanisms of Thiamine Utilization. Curr. Mol. Med. 2001, 1, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M. The possibility of neurotoxicity in the hippocampus in major depression: A primer on neuron death. Boil. Psychiatry 2000, 48, 755–765. [Google Scholar] [CrossRef]
- Zhang, G.; Ding, H.; Chen, H.; Ye, X.; Li, H.; Lin, X.; Ke, Z.-J. Thiamine nutritional status and depressive symptoms are inversely associated among older Chinese adults. J. Nutr. 2012, 143, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Carney, M.W.P.; Williams, D.G.; Sheffield, B.F. Thiamine and Pyridoxine Lack in Newly-Admitted Psychiatric Patients. Br. J. Psychiatry 1979, 135, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Karuppagounder, S.S.; Xu, H.; Pechman, D.; Chen, L.H.; DeGiorgio, L.A.; Gibson, G.E. Translocation of Amyloid Precursor Protein C-terminal Fragment(s) to the Nucleus Precedes Neuronal Death due to Thiamine Deficiency-induced Mild Impairment of Oxidative Metabolism. Neurochem. Res. 2008, 33, 1365–1372. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Khoa, D.T.; Busschots, G.V. Beriberi (Thiamine Deficiency); Medscape: New York, NY, USA, 2020. [Google Scholar]
- Tanabe, N.; Hiraoka, E.; Kataoka, J.; Naito, T.; Matsumoto, K.; Arai, J.; Norisue, Y. Wet Beriberi Associated with Hikikomori Syndrome. J. Gen. Intern. Med. 2017, 33, 384–387. [Google Scholar] [CrossRef] [Green Version]
- Meurin, P. Le shoshin béribéri. Une catastrophe hémodynamique rapidement curable [Shoshin beriberi. A rapidly curable hemodynamic disaster]. Presse Med. 1996, 25, 1115–1118. [Google Scholar]
- DiNicolantonio, J.J.; Liu, J.; O’Keefe, J.H. Thiamine and Cardiovascular Disease: A Literature Review. Prog. Cardiovasc. Dis. 2018, 61, 27–32. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Niazi, A.K.; Lavie, C.J.; O’Keefe, J.H.; Ventura, H.O. Thiamine Supplementation for the Treatment of Heart Failure: A Review of the Literature. Congest. Heart Fail. 2013, 19, 214–222. [Google Scholar] [CrossRef]
- Mee, L.; Nabokina, S.M.; Sekar, V.T.; Subramanian, V.S.; Maedler, K.; Said, H.M. Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: Studies using mice and human pancreatic preparations. Am. J. Physiol. Liver Physiol. 2009, 297, G197–G206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornalley, P.J.; Babaei-Jadidi, R.; Al Ali, H.; Rabbani, N.; Antonysunil, A.; Larkin, J.; Ahmed, A.; Rayman, G.; Bodmer, C.W. High prevalence of low plasma thiamine concen-tration in diabetes linked to a marker of vascular disease. Diabetologia 2007, 50, 2164–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bureš, J.; Cyrany, J.; Kohoutova, D.; Förstl, M.; Rejchrt, S.; Kvetina, J.; Vorisek, V.; Kopáčová, M. Small intestinal bacterial overgrowth syndrome. World J. Gastroenterol. 2010, 16, 2978–2990. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Alam, S.S.; Riaz, S.; Larkin, J.R.; Akhtar, M.W.; Shafi, T.; Thornalley, P.J. High-dose thiamine therapy for patients with type 2 diabetesand microalbuminuria: A randomised, double-blind placebo-controlled pilot study. Diabetologia 2009, 52, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.S.; Riaz, S.; Akhtar, M.W. Effect of High Dose Thiamine Therapy on Risk Factors in Type 2 Diabetics. J. Diabetes Metab. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- González-Ortiz, M.; Martínez-Abundis, E.; Robles-Cervantes, J.A.; Ramírez-Ramírez, V.; Ramos-Zavala, M.G. Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naïve patients with type 2 diabetes. Eur. J. Nutr. 2010, 50, 145–149. [Google Scholar] [CrossRef]
- Page, G.L.J.; Laight, D.; Cummings, M.H. Thiamine deficiency in diabetes mellitus and the impact of thiamine replacement on glucose metabolism and vascular disease. Int. J. Clin. Pract. 2011, 65, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Weiss, S.; Wilkins, R.W. The nature of the cardiovascular disturbances in nutritional deficiency states (beriberi). Ann. Intern. Med. 1937, 11, 104–107. [Google Scholar] [CrossRef]
- Attas, M.; Hanley, H.G.; Stultz, D.; Jones, M.R.; McAllister, R.G. Fulminant beriberi heart disease with lactic acidosis: Presentation of a case with evaluation of left ventricular function and review of pathophysiologic mechanisms. Circulation 1978, 58, 566–572. [Google Scholar] [CrossRef] [Green Version]
- Stirban, A.; Nandrean, S. Benfotiamine counteracts smoking-induced vascular dysfunctionin healthy smokers. Int. J. Vasc. Med. 2012, 2012, 968761. [Google Scholar]
- Al-Bayati, A.R.; Nichols, J.; Jovin, T.G.; Jadhav, A. Thiamine Deficiency Presenting as Intraventricular Hemorrhage. Stroke 2016, 47, 95–97. [Google Scholar] [CrossRef] [Green Version]
- Blum, A.; Ovadia, M.; Rosen, G.; Simsolo, C. Immediate recovery of an “ischemic stroke” following treatment with intravenous thiamine (vitamin B1). Isr. Med Assoc. J. 2014, 16, 518–519. [Google Scholar]
- Aills, L.; Blankenship, J.; Buffington, C.; Furtado, M.; Parrot, J. Bariatric nutrition: Suggestions for the surgical weight loss patient. Surg. Obes. Relat. Dis. 2008, 4, 73–108. [Google Scholar] [CrossRef] [PubMed]
- Bal, B.S.; Finelli, F.C.; Shope, T.R.; Koch, T.R. Nutritional deficiencies after bariatric surgery. Nat. Rev. Endocrinol. 2012, 8, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.D.; Cook, C.C.H.; Touquet, R.; Henry, J.A. The Royal College of Physicians Report on Alcohol: Guidelines for Managing Wernicke’s Encephalopathy in the Accident and Emergency Department. Alcohol Alcohol. 2002, 37, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechanick, J.I.; Youdim, A.; Jones, D.B.; Garvey, W.T.; Hurley, D.L.; McMahon, M.M.; Heinberg, L.J.; Kushner, R.; Adams, T.D.; Shikora, S.; et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: Cosponsored by American Association of Clinical Endocrinologists, The Obesity Society and American Society for Metabolic & Bariatric Surgery. Surg. Obes. Relat. Dis. 2013, 9, 159–191. [Google Scholar] [PubMed]
- Frank, L.L. Thiamin in Clinical Practice. J. Parenter. Enter. Nutr. 2015, 39, 503–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, A.D.; Marshall, E.J. The Treatment of Patients at Risk of Developing Wernicke’s Encephalopathy in the Community. Alcohol Alcohol. 2005, 41, 159–167. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; Food and Drug Administration. Parenteral multivitamin products: Drugs for human use; drug efficacy study implementation; amendment. Fed Regist. 2000, 65, 21200–21201. [Google Scholar]
- Royal College of Physicians. Alcohol—Can the NHS Afford It? Recommendations for a Coherent Alcohol Strategy for Hospitals; Royal College of Physicians: London, UK, 2001. [Google Scholar]
- Jung, Y.-C.; Chanraud, S.; Sullivan, E.V. Neuroimaging of Wernicke’s encephalopathy and Korsakoff’s syndrome. Neuropsychol. Rev. 2012, 22, 170–180. [Google Scholar] [CrossRef]
- Sechi, G.; Serra, A. Wernicke’s encephalopathy: New clinical settings and recent advances in diagnosis and management. Lancet Neurol. 2007, 6, 442–455. [Google Scholar] [CrossRef]
- Hazell, A.S.; Todd, K.; Butterworth, R.F. Mechanisms of neuronal cell death in Wernicke’s encephalopathy. Metab. Brain Dis. 1998, 13, 97–122. [Google Scholar] [CrossRef] [PubMed]
- Antunez, E.; Estruch, R.; Cardenal, C.; Nicolas, J.M.; Fernández-Solà, J.; Urbano-Marquez, A. Usefulness of CT and MR imaging in the diagnosis of acute Wernicke’s encephalopathy. Am. J. Roentgenol. 1998, 171, 1131–1137. [Google Scholar] [CrossRef]
- Cerase, A.; Rubenni, E.; Rufa, A.; Vallone, I.; Galluzzi, P.; Coratti, G.; Franchi, F.; Giannini, F.; Venturi, C. CT and MRI of Wernicke’s encephalopathy. Radiol. Med. 2011, 116, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, R.F.; Kril, J.J.; Harper, C.G. Thiamine-Dependent Enzyme Changes in the Brains of Alcoholics: Relationship to the Wernicke-Korsakoff Syndrome. Alcohol. Clin. Exp. Res. 1993, 17, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Zuccoli, G.; Pipitone, N. Neuroimaging findings in acute Wernicke’s encephalopathy: Review of the literature. Am. J. Roentgenol. 2009, 192, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Fei, G.-Q.; Zhong, C.; Jin, L.; Wang, J.; Zhang, Y.; Zheng, X.; Zhang, Y.; Hong, Z. Clinical Characteristics and MR Imaging Features of Nonalcoholic Wernicke Encephalopathy. Am. J. Neuroradiol. 2008, 29, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Ashikaga, R.; Araki, Y.; Ono, Y.; Itami, N.; Akamatsu, M.; Kinoshita, K.; Ishida, O. FLAIR appearance of Wernicke encephalopathy. Radiat. Med. 1997, 15, 251–253. [Google Scholar]
- Chung, T.I.; Kim, J.S.; Park, S.K.; Kim, B.S.; Ahn, K.J.; Yang, D.W. Diffusion weighted MR imaging of acute Wernicke’s encephalopathy. Eur. J. Radiol. 2003, 45, 256–258. [Google Scholar] [CrossRef]
- Lapergue, B.; Klein, I.; Olivot, J.; Amarenco, P. Diffusion weighted imaging of cerebellar lesions in Wernicke’s encephalopathy. J. Neuroradiol. 2006, 33, 126–128. [Google Scholar] [CrossRef]
- Mascalchi, M.; Simonelli, P.; Tessa, C.; Giangaspero, F.; Petruzzi, P.; Bosincu, L.; Conti, M.; Sechi, G.; Salvi, F. Do acute lesions of Wernicke’s encephalopathy show contrast enhancement? Report of three cases and review of the literature. Neuroradiology 1999, 41, 249–254. [Google Scholar] [CrossRef]
- Rugilo, C.A.; Roca, M.C.; Zurru, M.C.; Capizzano, A.A.; Pontello, G.A.; Gatto, E.M. Proton MR spectroscopy in Wernicke encephalopathy. Am. J. Neuroradiol. 2003, 24, 952–955. [Google Scholar] [PubMed]
- Murata, T.; Fujito, T.; Kimura, H.; Omori, M.; Itoh, H.; Wada, Y. Serial MRI and (1)H-MRS of Wernicke’s encephalopathy: Report of a case with remarkable cerebellar lesions on MRI. Psychiatry Res. 2001, 108, 49–55. [Google Scholar] [CrossRef]
- Zhong, C.; Jin, L.; Fei, G. MR Imaging of nonalcoholic Wernicke encephalopathy: A follow-up study. Am. J. Neuroradiol. 2005, 26, 2301–2305. [Google Scholar] [PubMed]
- Sullivan, E.V.; Pfefferbaum, A. Neuroimaging of the Wernicke-Korsakoff Syndrome. Alcohol Alcohol. 2009, 44, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallucci, M.; Bozzao, A.; Splendiani, A.; Masciocchi, C.; Passariello, R. Wernicke encephalopathy: MR findings in five patients. Am. J. Roentgenol. 1990, 155, 1309–1314. [Google Scholar] [CrossRef]
- Butterworth, R.F. Pathophysiologic mechanisms responsible for the reversible (thiamine-responsive) and irreversible (thiamine non-responsive) neurological symptoms of Wernicke’s encephalopathy. Drug Alcohol Rev. 1993, 12, 315–322. [Google Scholar] [CrossRef]
- Lakhani, S.V.; Shah, H.N.; Alexander, K.; Finelli, F.C.; Kirkpatrick, J.R.; Koch, T.R. Small intestinal bacterial overgrowth and thiamine deficiency after Roux-en-Y gastric bypass surgery in obese patients. Nutr. Res. 2008, 28, 293–298. [Google Scholar] [CrossRef]
- Isenberg-Grzeda, E.; Kutner, H.E.; Nicolson, S.E. Wernicke-Korsakoff-Syndrome: Under-Recognized and Under-Treated. J. Psychosom. Res. 2012, 53, 507–516. [Google Scholar] [CrossRef]
- Elmadfa, I.; Majchrzak, D.; Rust, P.; Genser, D. The Thiamine Status of Adult Humans Depends on Carbohydrate Intake. Int. J. Vitam. Nutr. Res. 2001, 71, 217–221. [Google Scholar] [CrossRef]
- Kennedy, R.; Hunt, S.; Ahmad, J.; Menezes, C.; Clements, W.B.; Kennedy, J.A. Wernicke’s Encephalopathy After Laparoscopic Cardiomyotomy for Achalasia. J. Parenter. Enter. Nutr. 2007, 31, 324–325. [Google Scholar] [CrossRef] [PubMed]
- Markkanen, T. Metabolic disturbance after gastro-oesophageal resection. Int. J. Vitam. Nutr. Res. 1973, 43, 549–554. [Google Scholar] [PubMed]
- Koike, H.; Misu, K.; Hattori, N.; Ito, S.; Ichimura, M.; Ito, H.; Hirayama, M.; Nagamatsu, M.; Sasaki, I.; Sobue, G. Postgastrectomy polyneuropathy with thiamine deficiency. J. Neurol. Neurosurg. Psychiatry 2001, 71, 357–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgiannos, S.; Weston, P.; Goode, A. Micronutrients in gastrointestinal cancer. Br. J. Cancer 1993, 68, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, T.; Villafane-Ferriol, N.; Shah, K.P.; Shah, R.M.; Cao, H.S.T.; Massarweh, N.N.; Silberfein, E.J.; Choi, E.A.; Hsu, C.; McElhany, A.L.; et al. Nutritional and Metabolic Derangements in Pancreatic Cancer and Pancreatic Resection. Nutrients 2017, 9, 243. [Google Scholar] [CrossRef]
- Gianotti, L.V.; Besselink, M.G.; Sandini, M.; Hackert, T.; Conlon, K.; Gerritsen, A.; Griffin, O.; Fingerhut, A.; Probst, P.; Abu Hilal, M.; et al. Nutritional support and therapy in pancreatic surgery: A position paper of the International Study Group on Pancreatic Surgery (ISGPS). Surgery 2018, 164, 1035–1048. [Google Scholar] [CrossRef]
- Rasmussen, H.H.; Irtun, Ø.; Olesen, S.S.; Drewes, A.M.; Holst, M. Nutrition in chronic pancreatitis. World J. Gastroenterol. 2013, 19, 7267–7275. [Google Scholar] [CrossRef]
- Federico, P.; Iaccarino, L.; Bugiardini, E.; Dadone, V.; Franceschini, L.D.T.; Colombo, C. Wernicke’s encephalopathy, refeeding syndrome and wet beriberi after laparoscopic sleeve gastrectomy: The importance of thiamine evaluation. Eur. J. Clin. Nutr. 2020, 74, 659–662. [Google Scholar] [CrossRef]
- Hutcheon, D.A. Malnutrition-Induced Wernicke’s Encephalopathy Following a Water-Only Fasting Diet. Nutr. Clin. Pract. 2014, 30, 92–99. [Google Scholar] [CrossRef]
- Tabbara, M.; Carandina, S.; Bossi, M.; Polliand, C.; Genser, L.; Barrat, C. Rare Neurological Complications After Sleeve Gastrectomy. Obes. Surg. 2016, 26, 2843–2848. [Google Scholar] [CrossRef]
- Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, other Vitamin B, and Choline. Dietary References Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; Food and Nutrition Board, National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Walmsley, R.S. Refeeding syndrome: Screening, incidence, and treatment during parenteral nutrition. J. Gastroenterol. Hepatol. 2013, 28, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Mehler, P.S.; Winkelman, A.B.; Andersen, D.M.; Gaudiani, J.L. Nutritional Rehabilitation: Practical Guidelines for Refeeding the Anorectic Patient. J. Nutr. Metab. 2010, 2010, 625782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo-Castro, M.; Martínez, C.V. The refeeding syndrome. Importance of phosphorus. Med. Clin. 2018, 150, 472–478. [Google Scholar] [CrossRef]
FOOD | THIAMINE MG | % RDA |
---|---|---|
Kellogg’s all-bran | 2.27 | 162.14% |
Wheat germ | 1.882 | 134.43% |
Sunflower seeds | 1.48 | 105.71% |
Karkadè | 1.279 | 91.36% |
Macadamia nuts | 1.195 | 85.36% |
Parma Ham | 1.03 | 73.57% |
Beans | 0.9 | 64.29% |
Lentils | 0.873 | 62.36% |
Oats | 0.763 | 53.86% |
Wurstel | 0.593 | 42.36% |
Whole wheat pasta | 0.488 | 34.86% |
Bread | 0.473 | 33.79% |
English muffins | 0.431 | 30.79% |
Pork Ribs | 0.418 | 29.86% |
Bagel | 0.403 | 28.79% |
Quinoa | 0.36 | 25.71% |
Hamburger | 0.349 | 24.93% |
Cashew butter | 0.312 | 22.29% |
Green Beans | 0.3 | 22% |
Blue fin tuna | 0.241 | 17.21% |
Pizza | 0.211 | 15.07% |
Asparagus | 0.121 | 8.6% |
Nori seaweed | 0.098 | 7% |
Parsley | 0.086 | 6.14% |
Tofu | 0.081 | 5.79% |
Spinach | 0.078 | 5.57% |
Broccoli | 0.071 | 5.07% |
Carrots | 0.066 | 4.71% |
Fried chicken | 0.051 | 3.64% |
Onion | 0.046 | 3.29% |
Egg | 0.04 | 2.86% |
Lobster | 0.02 | 1.43% |
Soy sauce | 0.004 | 0.29% |
Marshmallow | 0.001 | 0.07% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacei, F.; Tesone, A.; Laudi, N.; Laudi, E.; Cretti, A.; Pnini, S.; Varesco, F.; Colombo, C. The Relevance of Thiamine Evaluation in a Practical Setting. Nutrients 2020, 12, 2810. https://doi.org/10.3390/nu12092810
Pacei F, Tesone A, Laudi N, Laudi E, Cretti A, Pnini S, Varesco F, Colombo C. The Relevance of Thiamine Evaluation in a Practical Setting. Nutrients. 2020; 12(9):2810. https://doi.org/10.3390/nu12092810
Chicago/Turabian StylePacei, Federico, Antonella Tesone, Nazzareno Laudi, Emanuele Laudi, Anna Cretti, Shira Pnini, Fabio Varesco, and Chiara Colombo. 2020. "The Relevance of Thiamine Evaluation in a Practical Setting" Nutrients 12, no. 9: 2810. https://doi.org/10.3390/nu12092810