Next Article in Journal
Satellite Observations of El Niño Impacts on Eurasian Spring Vegetation Greenness during the Period 1982–2015
Next Article in Special Issue
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
Previous Article in Journal
On-Ground Retracking to Correct Distorted Waveform in Spaceborne Global Navigation Satellite System-Reflectometry
Previous Article in Special Issue
Integrated System for Auto-Registered Hyperspectral and 3D Structure Measurement at the Point Scale
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Remote Sens. 2017, 9(7), 642; doi:10.3390/rs9070642

The DOM Generation and Precise Radiometric Calibration of a UAV-Mounted Miniature Snapshot Hyperspectral Imager

1
Key Laboratory of Quantitative Remote Sensing in Agriculture, Ministry of Agriculture, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China
2
National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
3
School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
These authors contributed equally to this work and should be considered co-first authors.
*
Authors to whom correspondence should be addressed.
Academic Editors: Clement Atzberger and Prasad Thenkabail
Received: 5 April 2017 / Revised: 1 June 2017 / Accepted: 16 June 2017 / Published: 22 June 2017
(This article belongs to the Special Issue Earth Observations for Precision Farming in China (EO4PFiC))
View Full-Text   |   Download PDF [8393 KB, uploaded 27 June 2017]   |  

Abstract

Hyperspectral remote sensing is used in precision agriculture to remotely and quickly acquire crop phenotype information. This paper describes the generation of a digital orthophoto map (DOM) and radiometric calibration for images taken by a miniaturized snapshot hyperspectral camera mounted on a lightweight unmanned aerial vehicle (UAV). The snapshot camera is a relatively new type of hyperspectral sensor that can acquire an image cube with one spectral and two spatial dimensions at one exposure. The images acquired by the hyperspectral snapshot camera need to be mosaicked together to produce a DOM and radiometrically calibrated before analysis. However, the spatial resolution of hyperspectral cubes is too low to mosaic the images together. Furthermore, there are no systematic radiometric calibration methods or procedures for snapshot hyperspectral images acquired from low-altitude carrier platforms. In this study, we obtained hyperspectral imagery using a snapshot hyperspectral sensor mounted on a UAV. We quantitatively evaluated the radiometric response linearity (RRL) and radiometric response variation (RRV) and proposed a method to correct the RRV effect. We then introduced a method to interpolate position and orientation system (POS) information and generate a DOM with low spatial resolution and a digital elevation model (DEM) using a 3D mesh model built from panchromatic images with high spatial resolution. The relative horizontal geometric precision of the DOM was validated by comparison with a DOM generated from a digital RGB camera. A surface crop model (CSM) was produced from the DEM, and crop height for 48 sampling plots was extracted and compared with the corresponding field-measured crop height to verify the relative precision of the DEM. Finally, we applied two absolute radiometric calibration methods to the generated DOM and verified their accuracy via comparison with spectra measured with an ASD Field Spec Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA). The DOM had high relative horizontal accuracy, and compared with the digital camera-derived DOM, spatial differences were below 0.05 m (RMSE = 0.035). The determination coefficient for a regression between DEM-derived and field-measured crop height was 0.680. The radiometric precision was 5% for bands between 500 and 945 nm, and the reflectance curve in the infrared spectral region did not decrease as in previous research. The pixel and data sizes for the DOM corresponding to a field area of approximately 85 m × 34 m were small (0.67 m and approximately 13.1 megabytes, respectively), which is convenient for data transmission, preprocessing and analysis. The proposed method for radiometric calibration and DOM generation from hyperspectral cubes can be used to yield hyperspectral imagery products for various applications, particularly precision agriculture. View Full-Text
Keywords: UAV; snapshot hyperspectral imaging; radiometric response variation; POS interpolation; hyperspectral DOM; radiometric calibration UAV; snapshot hyperspectral imaging; radiometric response variation; POS interpolation; hyperspectral DOM; radiometric calibration
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Yang, G.; Li, C.; Wang, Y.; Yuan, H.; Feng, H.; Xu, B.; Yang, X. The DOM Generation and Precise Radiometric Calibration of a UAV-Mounted Miniature Snapshot Hyperspectral Imager. Remote Sens. 2017, 9, 642.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top