Next Article in Journal
Modeling the Effects of the Urban Built-Up Environment on Plant Phenology Using Fused Satellite Data
Previous Article in Journal
Gross Primary Production of a Wheat Canopy Relates Stronger to Far Red Than to Red Solar-Induced Chlorophyll Fluorescence
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Remote Sens. 2017, 9(1), 95; doi:10.3390/rs9010095

Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series

CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France
*
Author to whom correspondence should be addressed.
Academic Editors: Ioannis Gitas and Prasad S. Thenkabail
Received: 16 December 2016 / Revised: 12 January 2017 / Accepted: 16 January 2017 / Published: 22 January 2017

Abstract

A detailed and accurate knowledge of land cover is crucial for many scientific and operational applications, and as such, it has been identified as an Essential Climate Variable. This accurate knowledge needs frequent updates. This paper presents a methodology for the fully automatic production of land cover maps at country scale using high resolution optical image time series which is based on supervised classification and uses existing databases as reference data for training and validation. The originality of the approach resides in the use of all available image data, a simple pre-processing step leading to a homogeneous set of acquisition dates over the whole area and the use of a supervised classifier which is robust to errors in the reference data. The produced maps have a kappa coefficient of 0.86 with 17 land cover classes. The processing is efficient, allowing a fast delivery of the maps after the acquisition of the image data, does not need expensive field surveys for model calibration and validation, nor human operators for decision making, and uses open and freely available imagery. The land cover maps are provided with a confidence map which gives information at the pixel level about the expected quality of the result. View Full-Text
Keywords: land-cover; satellite image time series; Sentinel-2; Landsat-8; Random Forests land-cover; satellite image time series; Sentinel-2; Landsat-8; Random Forests
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top