Next Article in Journal
Mapping Decadal Land Cover Changes in the Woodlands of North Eastern Namibia from 1975 to 2014 Using the Landsat Satellite Archived Data
Next Article in Special Issue
Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia
Previous Article in Journal
Assessing Global Forest Land-Use Change by Object-Based Image Analysis
Previous Article in Special Issue
Highlighting Biome-Specific Sensitivity of Fire Size Distributions to Time-Gap Parameter Using a New Algorithm for Fire Event Individuation
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2016, 8(8), 679; doi:10.3390/rs8080679

An Assessment of Pre- and Post Fire Near Surface Fuel Hazard in an Australian Dry Sclerophyll Forest Using Point Cloud Data Captured Using a Terrestrial Laser Scanner

1
School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, VIC 3001, Australia
2
Bushfire and Natural Hazards Cooperative Research Centre, Melbourne, VIC 3002, Australia
*
Author to whom correspondence should be addressed.
Academic Editors: Diofantos Hadjimitsis, Ioannis Gitas, Luigi Boschetti, Kyriacos Themistocleous, Clement Atzberger and Prasad S. Thenkabail
Received: 20 June 2016 / Revised: 5 August 2016 / Accepted: 16 August 2016 / Published: 20 August 2016
View Full-Text   |   Download PDF [5164 KB, uploaded 20 August 2016]   |  

Abstract

Assessment of ecological and structrual changes induced by fire events is important for understanding the effects of fire, and planning future ecological and risk mitigation strategies. This study employs Terrestrial Laser Scanning (TLS) data captured at multiple points in time to monitor the changes in a dry sclerophyll forest induced by a prescribed burn. Point cloud data was collected for two plots; one plot undergoing a fire treatment, and the second plot remaining untreated, thereby acting as the control. Data was collected at three epochs (pre-fire, two weeks post fire and two years post fire). Coregistration of these multitemporal point clouds to within an acceptable tolerance was achieved through a two step process utilising permanent infield markers and manually extracted stem objects as reference targets. Metrics describing fuel height and fuel fragmentation were extracted from the point clouds for direct comparison with industry standard visual assessments. Measurements describing the change (or lack thereof) in the control plot indicate that the method of data capture and coregistration were achieved with the required accuracy to monitor fire induced change. Results from the fire affected plot show that immediately post fire 67% of area had been burnt with the average fuel height decreasing from 0.33 to 0.13 m. At two years post-fire the fuel remained signicantly lower (0.11 m) and more fragmented in comparison to pre-fire levels. Results in both the control and fire altered plot were comparable to synchronus onground visual assessment. The advantage of TLS over the visual assessment method is, however, demonstrated through the use of two physical and spatially quantifiable metrics to describe fuel change. These results highlight the capabilities of multitemporal TLS data for measuring and mapping changes in the three dimensional structure of vegetation. Metrics from point clouds can be derived to provide quantified estimates of surface and near-surface fuel loss and accumulation, and inform prescribed burn efficacy and burn severity reporting. View Full-Text
Keywords: fire severity; terrestrial laser scanning (TLS); fuel hazard; multi-temporal analysis; fuel-reduction; prescribe burn fire severity; terrestrial laser scanning (TLS); fuel hazard; multi-temporal analysis; fuel-reduction; prescribe burn
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wallace, L.; Gupta, V.; Reinke, K.; Jones, S. An Assessment of Pre- and Post Fire Near Surface Fuel Hazard in an Australian Dry Sclerophyll Forest Using Point Cloud Data Captured Using a Terrestrial Laser Scanner. Remote Sens. 2016, 8, 679.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top