Next Article in Journal
Three-Dimensional Surface Displacement Field Associated with the 25 April 2015 Gorkha, Nepal, Earthquake: Solution from Integrated InSAR and GPS Measurements with an Extended SISTEM Approach
Previous Article in Journal
Mapping Dynamics of Inundation Patterns of Two Largest River-Connected Lakes in China: A Comparative Study
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Remote Sens. 2016, 8(7), 558; doi:10.3390/rs8070558

Remote Sensing of Sea Surface pCO2 in the Bering Sea in Summer Based on a Mechanistic Semi-Analytical Algorithm (MeSAA)

State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
School of Marine Science and Policy, University of Delaware, Newark, DE 19716, USA
Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
Author to whom correspondence should be addressed.
Academic Editors: Deepak R. Mishra and Prasad S. Thenkabail
Received: 15 May 2016 / Revised: 18 June 2016 / Accepted: 25 June 2016 / Published: 30 June 2016
View Full-Text   |   Download PDF [5969 KB, uploaded 30 June 2016]   |  


The Bering Sea, one of the largest and most productive marginal seas, is a crucial carbon sink for the marine carbonate system. However, restricted by the tough observation conditions, few underway datasets of sea surface partial pressure of carbon dioxide (pCO2) have been obtained, with most of them in the eastern areas. Satellite remote sensing data can provide valuable information covered by a large area synchronously with high temporal resolution for assessments of pCO2 that subsequently allow quantification of air-sea carbon dioxide 2 flux. However, pCO2 in the Bering Sea is controlled by multiple factors and thus it is hard to develop a remote sensing algorithm with empirical regression methods. In this paper pCO2 in the Bering Sea from July to September was derived based on a mechanistic semi-analytical algorithm (MeSAA). It was assumed that the observed pCO2 can be analytically expressed as the sum of individual components controlled by major factors. First, a reference water mass that was minimally influenced by biology and mixing was identified in the central basin, and then thermodynamic and biological effects were parameterized for the entire area. Finally, we estimated pCO2 with satellite temperature and chlorophyll data. Satellite results agreed well with the underway observations. Our study suggested that throughout the Bering Sea the biological effect on pCO2 was more than twice as important as temperature, and contributions of other effects were relatively small. Furthermore, satellite observations demonstrate that the spring phytoplankton bloom had a delayed effect on summer pCO2 but that the influence of this biological event varied regionally; it was more significant on the continental slope, with a later bloom, than that on the shelf with an early bloom. Overall, the MeSAA algorithm was not only able to estimate pCO2 in the Bering Sea for the first time, but also provided a quantitative analysis of the contribution of various processes that influence pCO2. View Full-Text
Keywords: sea surface pCO2; satellite remote sensing; semi-analytical algorithm; the Bering Sea; marine carbonate system sea surface pCO2; satellite remote sensing; semi-analytical algorithm; the Bering Sea; marine carbonate system

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Song, X.; Bai, Y.; Cai, W.-J.; Chen, C.-T.A.; Pan, D.; He, X.; Zhu, Q. Remote Sensing of Sea Surface pCO2 in the Bering Sea in Summer Based on a Mechanistic Semi-Analytical Algorithm (MeSAA). Remote Sens. 2016, 8, 558.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top