Next Article in Journal
Seasonal Variation in the NDVI–Species Richness Relationship in a Prairie Grassland Experiment (Cedar Creek)
Previous Article in Journal
Comparison of Sun-Induced Chlorophyll Fluorescence Estimates Obtained from Four Portable Field Spectroradiometers
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2016, 8(2), 119; doi:10.3390/rs8020119

Efficient Emulation of Radiative Transfer Codes Using Gaussian Processes and Application to Land Surface Parameter Inferences

1
NERC National Centre for Earth Observation (NCEO), UCL Geography, Gower Street, London WC1E 6BT, UK
2
Department of Geography, University College London, Pearson Building, Gower Street, London WC1E 6BT, UK
*
Author to whom correspondence should be addressed.
Academic Editors: Magaly Koch, Richard Muller and Prasad S. Thenkabail
Received: 23 December 2015 / Revised: 20 January 2016 / Accepted: 27 January 2016 / Published: 5 February 2016
View Full-Text   |   Download PDF [3035 KB, uploaded 5 February 2016]   |  

Abstract

There is an increasing need to consistently combine observations from different sensors to monitor the state of the land surface. In order to achieve this, robust methods based on the inversion of radiative transfer (RT) models can be used to interpret the satellite observations. This typically results in an inverse problem, but a major drawback of these methods is the computational complexity. We introduce the concept of Gaussian Process (GP) emulators: surrogate functions that accurately approximate RT models using a small set of input (e.g., leaf area index, leaf chlorophyll, etc.) and output (e.g., top-of-canopy reflectances or at sensor radiances) pairs. The emulators quantify the uncertainty of their approximation, and provide a fast and easy route to estimating the Jacobian of the original model, enabling the use of e.g., efficient gradient descent methods. We demonstrate the emulation of widely used RT models (PROSAIL and SEMIDISCRETE) and the coupling of vegetation and atmospheric (6S) RT models targetting particular sensor bands. A comparison with the full original model outputs shows that the emulators are a viable option to replace the original model, with negligible bias and discrepancies which are much smaller than the typical uncertainty in the observations. We also extend the theory of GP to cope with models with multivariate outputs (e.g., over the full solar reflective domain), and apply this to the emulation of PROSAIL, coupled 6S and PROSAIL and to the emulation of individual spectral components of 6S. In all cases, emulators successfully predict the full model output as well as accurately predict the gradient of the model calculated by finite differences, and produce speed ups between 10,000 and 50,000 times that of the original model. Finally, we use emulators to invert leaf area index ( L A I ), leaf chlorophyll content ( C a b ) and equivalent leaf water thickness ( C w ) from a time series of observations from Sentinel-2/MSI, Sentinel-3/SLSTR and Proba-V observations. We use sophisticated Hamiltonian Markov Chain Monte Carlo (MCMC) methods that exploit the speed of the emulators as well as the gradient estimation, a variational data assimilation (DA) method that extends the problem with temporal regularisation, and a particle filter using a regularisation model. The variational and particle filter approach appear more successful (meaning parameters closer to the truth, and smaller uncertainties) than the MCMC approach as a result of using the temporal regularisation mode. These work therefore suggests that GP emulators are a practical way to implement sophisticated parameter retrieval schemes in an era of increasing data volumes. View Full-Text
Keywords: radiative transfer; emulation; inverse problems; data assimilation; gaussian processes radiative transfer; emulation; inverse problems; data assimilation; gaussian processes
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Gómez-Dans, J.L.; Lewis, P.E.; Disney, M. Efficient Emulation of Radiative Transfer Codes Using Gaussian Processes and Application to Land Surface Parameter Inferences. Remote Sens. 2016, 8, 119.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top