Remote Sens. 2014, 6(11), 10716-10732; doi:10.3390/rs61110716
Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure
1
Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
2
Round River Conservation Studies, 284 West 400 North #105, Salt Lake City, UT 84103, USA
*
Author to whom correspondence should be addressed.
Received: 1 July 2014 / Revised: 27 October 2014 / Accepted: 27 October 2014 / Published: 6 November 2014
(This article belongs to the Special Issue New Perspectives of Remote Sensing for Archaeology)
Abstract
Human land use legacies have significant and long-lasting ecological impacts across landscapes. Investigating ancient (>400 years) legacy effects can be problematic due to the difficulty in detecting specific, historic land uses, especially those hidden beneath dense canopies. Caracol, the largest (~200 km2) Maya archaeological site in Belize, was abandoned ca. A.D. 900, leaving behind myriad structures, causeways, and an extensive network of agricultural terraces that persist beneath the architecturally complex tropical forest canopy. Airborne LiDAR enables the detection of these below-canopy archaeological features while simultaneously providing a detailed record of the aboveground 3-dimensional canopy organization, which is indicative of a forest’s ecological function. Here, this remote sensing technology is used to determine the effects of ancient land use legacies on contemporary forest structure. Canopy morphology was assessed by extracting LiDAR point clouds (0.25 ha plots) from LiDAR-identified terraced (n = 150) and non-terraced (n = 150) areas on low (0°–10°), medium (10°–20°), and high (>20°) slopes. We calculated the average canopy height, canopy openness, and vertical diversity from the LiDAR returns, with topographic features (i.e., slope, elevation, and aspect) as covariates. Using a PerMANOVA procedure, we determined that forests growing on agricultural terraces exhibited significantly different canopy structure from those growing on non-terraced land. Terraces appear to mediate the effect of slope, resulting in less structural variation between slope and non-sloped land and yielding taller, more closed, more vertically diverse forests. These human land uses abandoned >1000 years ago continue to impact contemporary tropical rainforests having implications related to arboreal habitat and carbon storage. View Full-TextKeywords:
agricultural terracing; forest canopy structure; land use legacy; LiDAR; Maya
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Share & Cite This Article
MDPI and ACS Style
Hightower, J.N.; Butterfield, A.C.; Weishampel, J.F. Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure. Remote Sens. 2014, 6, 10716-10732.
Related Articles
Article Metrics
Comments
[Return to top]
Remote Sens.
EISSN 2072-4292
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert