Next Article in Journal
Object-Based Analysis of Airborne LiDAR Data for Building Change Detection
Next Article in Special Issue
Integrated Geophysical and Aerial Sensing Methods for Archaeology: A Case History in the Punic Site of Villamar (Sardinia, Italy)
Previous Article in Journal
An EOF-Based Algorithm to Estimate Chlorophyll a Concentrations in Taihu Lake from MODIS Land-Band Measurements: Implications for Near Real-Time Applications and Forecasting Models
Previous Article in Special Issue
Tridimensional Reconstruction Applied to Cultural Heritage with the Use of Camera-Equipped UAV and Terrestrial Laser Scanner
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2014, 6(11), 10716-10732; doi:10.3390/rs61110716

Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure

1
Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
2
Round River Conservation Studies, 284 West 400 North #105, Salt Lake City, UT 84103, USA
*
Author to whom correspondence should be addressed.
Received: 1 July 2014 / Revised: 27 October 2014 / Accepted: 27 October 2014 / Published: 6 November 2014
(This article belongs to the Special Issue New Perspectives of Remote Sensing for Archaeology)
View Full-Text   |   Download PDF [3623 KB, uploaded 6 November 2014]   |  

Abstract

Human land use legacies have significant and long-lasting ecological impacts across landscapes. Investigating ancient (>400 years) legacy effects can be problematic due to the difficulty in detecting specific, historic land uses, especially those hidden beneath dense canopies. Caracol, the largest (~200 km2) Maya archaeological site in Belize, was abandoned ca. A.D. 900, leaving behind myriad structures, causeways, and an extensive network of agricultural terraces that persist beneath the architecturally complex tropical forest canopy. Airborne LiDAR enables the detection of these below-canopy archaeological features while simultaneously providing a detailed record of the aboveground 3-dimensional canopy organization, which is indicative of a forest’s ecological function. Here, this remote sensing technology is used to determine the effects of ancient land use legacies on contemporary forest structure. Canopy morphology was assessed by extracting LiDAR point clouds (0.25 ha plots) from LiDAR-identified terraced (n = 150) and non-terraced (n = 150) areas on low (0°–10°), medium (10°–20°), and high (>20°) slopes. We calculated the average canopy height, canopy openness, and vertical diversity from the LiDAR returns, with topographic features (i.e., slope, elevation, and aspect) as covariates. Using a PerMANOVA procedure, we determined that forests growing on agricultural terraces exhibited significantly different canopy structure from those growing on non-terraced land. Terraces appear to mediate the effect of slope, resulting in less structural variation between slope and non-sloped land and yielding taller, more closed, more vertically diverse forests. These human land uses abandoned >1000 years ago continue to impact contemporary tropical rainforests having implications related to arboreal habitat and carbon storage. View Full-Text
Keywords: agricultural terracing; forest canopy structure; land use legacy; LiDAR; Maya agricultural terracing; forest canopy structure; land use legacy; LiDAR; Maya
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Hightower, J.N.; Butterfield, A.C.; Weishampel, J.F. Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure. Remote Sens. 2014, 6, 10716-10732.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top