Remote Sens. 2013, 5(10), 4900-4918; doi:10.3390/rs5104900
Article

Estimation of Tree Cover in an Agricultural Parkland of Senegal Using Rule-Based Regression Tree Modeling

Received: 3 May 2013; in revised form: 19 September 2013 / Accepted: 23 September 2013 / Published: 9 October 2013
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Field trees are an integral part of the farmed parkland landscape in West Africa and provide multiple benefits to the local environment and livelihoods. While field trees have received increasing interest in the context of strengthening resilience to climate variability and change, the actual extent of farmed parkland and spatial patterns of tree cover are largely unknown. We used the rule-based predictive modeling tool Cubist® to estimate field tree cover in the west-central agricultural region of Senegal. A collection of rules and associated multiple linear regression models was constructed from (1) a reference dataset of percent tree cover derived from very high spatial resolution data (2 m Orbview) as the dependent variable, and (2) ten years of 10-day 250 m Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) composites and derived phenological metrics as independent variables. Correlation coefficients between modeled and reference percent tree cover of 0.88 and 0.77 were achieved for training and validation data respectively, with absolute mean errors of 1.07 and 1.03 percent tree cover. The resulting map shows a west-east gradient from high tree cover in the peri-urban areas of horticulture and arboriculture to low tree cover in the more sparsely populated eastern part of the study area. A comparison of current (2000s) tree cover along this gradient with historic cover as seen on Corona images reveals dynamics of change but also areas of remarkable stability of field tree cover since 1968. The proposed modeling approach can help to identify locations of high and low tree cover in dryland environments and guide ground studies and management interventions aimed at promoting the integration of field trees in agricultural systems.
Keywords: tree cover; Sahel; rule-based modeling; multi-resolution; MODIS; Corona; change detection
PDF Full-text Download PDF Full-Text [3155 KB, uploaded 19 June 2014 01:17 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Herrmann, S.M.; Wickhorst, A.J.; Marsh, S.E. Estimation of Tree Cover in an Agricultural Parkland of Senegal Using Rule-Based Regression Tree Modeling. Remote Sens. 2013, 5, 4900-4918.

AMA Style

Herrmann SM, Wickhorst AJ, Marsh SE. Estimation of Tree Cover in an Agricultural Parkland of Senegal Using Rule-Based Regression Tree Modeling. Remote Sensing. 2013; 5(10):4900-4918.

Chicago/Turabian Style

Herrmann, Stefanie M.; Wickhorst, Andrew J.; Marsh, Stuart E. 2013. "Estimation of Tree Cover in an Agricultural Parkland of Senegal Using Rule-Based Regression Tree Modeling." Remote Sens. 5, no. 10: 4900-4918.

Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert