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Abstract: Field trees are an integral part of the farmed parkland landscape in West Africa 

and provide multiple benefits to the local environment and livelihoods. While field trees 

have received increasing interest in the context of strengthening resilience to climate 

variability and change, the actual extent of farmed parkland and spatial patterns of tree 

cover are largely unknown. We used the rule-based predictive modeling tool Cubist® to 

estimate field tree cover in the west-central agricultural region of Senegal. A collection of 

rules and associated multiple linear regression models was constructed from (1) a reference 

dataset of percent tree cover derived from very high spatial resolution data (2 m Orbview) 

as the dependent variable, and (2) ten years of 10-day 250 m Moderate Resolution Imaging 

Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) composites and 

derived phenological metrics as independent variables. Correlation coefficients between 

modeled and reference percent tree cover of 0.88 and 0.77 were achieved for training and 

validation data respectively, with absolute mean errors of 1.07 and 1.03 percent tree cover. 

The resulting map shows a west-east gradient from high tree cover in the peri-urban areas 

of horticulture and arboriculture to low tree cover in the more sparsely populated eastern 

part of the study area. A comparison of current (2000s) tree cover along this gradient with 

historic cover as seen on Corona images reveals dynamics of change but also areas of 

remarkable stability of field tree cover since 1968. The proposed modeling approach can 

help to identify locations of high and low tree cover in dryland environments and guide 

ground studies and management interventions aimed at promoting the integration of field 

trees in agricultural systems.  
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1. Introduction 

1.1. Importance of Tree Cover in West African Dryland Farming Systems 

Agricultural parklands are a traditional land use system in semi-arid West Africa that is 

characterized by deliberate retention of scattered trees on cultivated land [1,2]. These field trees 

constitute an integral part of the ecological and livelihood systems. They contribute to the maintenance 

of soil fertility and water conservation and provide food, fodder, fuel, medicinal products, and building 

materials to farmers [3]. Demographic, economic, climatic, and environmental developments of the 

past decades have put increasing pressure on this land use system and losses of trees have been 

reported, particularly since the devastating droughts of the late 1960s, e.g., Gonzales [4]. At the same 

time, there has been a growing awareness of the importance of field trees as integral components of 

dryland agricultural systems, particularly in the contexts of preventing or reversing land degradation 

and strengthening resilience to climate variability and change [5,6]. As a result, the knowledge base on 

agroforestry systems has been greatly advanced over the years, spanning research from tree-soil-crop 

biophysical interactions to social aspects of tree production and indigenous knowledge. However, most 

studies have been carried out at local scales and little quantitative data exist on the extent and spatial 

patterns of field tree cover at regional scales [7,8]. Scientists and development specialists have 

expressed great interest in assessments of the spatial extent and conditions of this traditional land use 

system, which is considered an asset in the portfolio of adaptation strategies to the unpredictable risks 

of climate change. A systematic assessment of current field tree cover is required to identify target 

areas for promoting regeneration of field trees, allocating funds for interventions, and monitoring long 

term program success.  

1.2. Role of Sub-Pixel Remote Sensing for Assessing Tree Cover 

With its synoptic perspective and consistent observing capabilities, remote sensing is a viable tool 

for systematic mapping of tree cover. Indeed, individual trees and clusters of trees can be readily 

identified on very high spatial resolution (0.5 m–4 m) images provided by commercial satellite 

sensors. However, the cost and data volume associated with very high spatial resolution images make 

their use problematic for covering larger geographic areas. On the other hand, medium, and coarse 

resolution data, while easily and freely available, do not provide enough spatial detail to resolve trees, 

leaving us with the challenge of inferring tree cover using sub-pixel analysis methods, which extract 

information on one or more components of mixed pixels [9]. 

Several of these methods were used in previous research to estimate tree and other green vegetation 

cover fractions at regional or global scales. They can be broadly divided into two categories: (1) linear 

mixture models, which rely on pure endmembers for model calibration, and (2) regression tree algorithms, 

which make use of the entire continuum of tree cover as training data to produce a set of linear models.  
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De Fries et al. (2000) used linear mixture modeling to generate a 1-km global percent tree cover dataset 

from Advanced Very High Resolution Radiometer (AVHRR) data [10]. Hansen et al. (2003) produced a 

500 m global percent tree canopy cover map from Moderate Resolution Imaging Spectrometer (MODIS) 

data using a regression tree algorithm and training data derived from Landsat [11]. Rokhmatuloh et al. 

(2005) mapped tree cover for Africa at 1-km resolution, also using a regression tree algorithm [12].  

A number of finer resolution studies were conducted at regional scales with multispectral Landsat data 

based on linear mixture [13–15] as well as regression tree [16] modeling approaches. The vast majority 

of the regional studies emphasize forested ecosystems, and global scale tree cover products also seem 

to perform better in regions of denser tree cover than in sparsely vegetated drylands. For our area of 

interest, the semiarid Sahel zone of West Africa with its rather sparse tree cover, neither the 500 m 

MODIS vegetation continuous fields (VCF) product [10] nor the most current 250 m VCF product 

(Collection 5) appear to accurately portray the spatial pattern of tree cover. Its limitations for 

describing patterns of tree cover in savannas are also acknowledged by Favier et al. (2012) [17]. 

1.3. Objectives 

Our primary objective is to test a locally calibrated, rule-based modeling approach and produce a 

regionally valid map of current (2000s) tree cover for the west central agricultural region of Senegal, 

which is accurate enough to be useful for land use/management planning purposes and to function as a 

baseline for monitoring changes in tree cover. A second objective is to show the usefulness and 

potential application of this product for assessing long-term changes in tree cover at the example of a 

longitudinal transect. 

2. Data and Methods 

2.1. Study Area 

Our study area is the west central agricultural region of Senegal [18], which extends over  

ca. 26,000 km2 (Figure 1). It has been a center of intense cash crop production of peanuts since French 

colonial times and is also referred to as the “Old Peanut Basin”. Originally a mosaic of wooded 

savanna and open woodlands, this ecoregion has been transformed into a cultural landscape by 

centuries of human activity. Today, a quasi-continuous agricultural parkland dominated by the 

leguminous tree Faidherbia albida (also Acacia albida, or “kad” in Wolof) has replaced almost all 

remnants of natural vegetation (Figure 2). Faidherbia albida is characterized by a reverse phenology, 

shedding its leaves at the peak of the rainy season, while being in full leaf throughout the dry season. 

Other indigenous woody species that are present in the region include Acacia macrostachya, Acacia 

Senegal, Adansonia digitata, Sterculia setigera (all deciduous), Anogeissus leiocarpus, Combretum 

micranthum, Combretum nigricans, Guiera senegalensis, Tamarindus indica (all semi-evergreen), 

Balanites aegyptiaca, Boscia senegalensis, Combretum glutinosum, Piliostigma reticulatum (all 

evergreen). Two non-indigenous evergreen trees that are commonly found in village locations as shade 

trees are the mango tree (Mangifera indica) and the neem tree (Azadirachta indica).  

Despite fluctuations in the extent of cultivated area resulting from economic and policy factors, rain-fed 

agriculture remains the most important land use and a mainstay of people’s livelihoods. In the past two 
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decades, cultivation of the food staple millet has increased at the expense of the cash crop peanuts [2]. This 

shift in cropping patterns can be partly explained by a cutback of fertilizer subsidies, which has also 

renewed awareness of the importance of field trees for improving and conserving soil fertility. 

Figure 1. Location map of the west central agricultural region in Senegal. 

 

Figure 2. Agricultural parkland landscape with a field tree canopy cover of 5–8% in the 

administrative region of Thies, January 2011. The Faidherbia albida trees are in full leaf, 

whereas the ground is bare of photosynthetically active herbaceous or crop cover in this 

season, which facilitates extraction of tree cover from remote sensing data (Photo: Gray 

Tappan, USGS). 

 

The climate in the study area is sahelo-sudanian with mean annual rainfall ranging from 300 mm in 

the north to 700 mm in the south, concentrated in the summer months (July to October) and highly 
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variable from year to year. Hence, the region is considered marginal for rainfed agriculture, and 

production has been hit by several severe droughts in the past [19]. Under future climate change 

scenarios, higher temperatures and potentially lower and more variable rainfall are expected to place 

additional stress on the region’s land and water resources [20], adding to loss of soil fertility and 

propensity to erosion from decades of peanut cultivation [21]. In the interest of improving resilience 

and productivity of agricultural production systems, maintaining or increasing field tree cover has been 

promoted as one pillar of “climate smart agriculture” in this type of ecosystem [22]. 

2.2. Data 

We used a multi-resolution approach, which combines very high spatial resolution data with high 

temporal resolution data, in order to compensate for the tradeoffs inherent in each individual remote 

sensing dataset [23]. The datasets and processing steps are illustrated in Figure 3 and will be described 

in the following sections. 

Figure 3. Illustrated diagram of the data processing stream leading to the estimated percent 

tree cover map of the study region. Cubist® was used to derive a set of decision rules from 

training cases, each of which is linked to a multiple linear regression model. 

 

2.2.1. High Spatial Resolution Data: Orbview 

Two adjacent 35 × 15 km Orbview scenes located in the center of the study area (Figure 1) were 

used to identify trees and create a reference dataset of percent tree cover (i.e., canopy cover area per pixel 

area) for training and validation purposes. Both scenes date from 22 March 2011, a time of year when 

herbaceous cover is dormant and cultivated fields are harvested, whereas most trees are in full leaf. At a 

spatial resolution of 2 m, this multispectral (visible and near infrared wavelengths) image product from 

the commercial GeoEye satellite is well suited for distinguishing individual and clusters of trees.  
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In addition to the two Orbview scenes that were used in the tree cover modeling, high resolution 

imagery accessed in Google Earth provided supplemental supporting information for visual validation 

of the modeling results beyond the area covered by the Orbview scenes. This imagery was acquired 

between 2000 and 2011 by the GeoEye, Digital Global, and SPOT sensors.  

2.2.2. High Temporal Resolution Data: MODIS 

The Moderate Resolution Imaging Spectrometer (MODIS) is characterized by a high temporal 

frequency of acquisitions—the MODIS sensors on the Terra and Aqua satellite platforms provide daily 

morning and afternoon overpasses respectively—as well as significantly improved spatial resolutions, 

geolocational accuracy, and atmospheric corrections compared to the legacy Advanced Very High 

Resolution Radiometer (AVHRR) sensor [24]. Since its launch in 2000, MODIS data products have 

been used by the land remote sensing community for a number of research applications including 

vegetation monitoring, crop yield estimation, and burn scar identification [25]. One of the most widely 

used data products from this sensor is the Normalized Difference Vegetation Index (NDVI), a 

normalized ratio of reflectances in the red and near infrared portions of the electromagnetic spectrum 

((NIR – red)/(NIR + red)), which is sensitive to chlorophyll content and can be used as an indicator of 

the amount of actively photosynthesizing, green vegetation [26,27]. 

In this study, we used the eMODIS (expedited MODIS) NDVI, a preprocessed dataset for Africa 

provided by the US Geological Survey Earth Resources Observation Systems (EROS) Data Center in 

response to needs expressed by the vegetation monitoring community for a more user-friendly regional 

scale satellite data set. In historical processing mode, the eMODIS NDVI is a temporally smoothed [28] 

time series composited in 10-day intervals every five days at 250 m spatial resolution for the period of 

2001 to 2010 [29], resulting in 72 compositing periods per year. Its shorter compositing intervals compared 

to the standard MODIS NDVI (16 days) make this product particularly useful for capturing rapid changes 

in vegetation phenology and subtle differences in the phenologies of woody and herbaceous cover. 

2.2.3. Historical Space Photography: Corona 

Declassified satellite photography from the Corona intelligence project [30] dating from 31 January 

1968, was used for visually estimating tree cover in the late 1960s, a time period which is often taken 

as a reference point of the landscape condition before the great Sahelian droughts. The panchromatic 

space photos, taken on elongated film strips covering a ground area 14 × 188 km, have a spatial 

resolution of up to 1.8 m, but show geometrical distortions due to the movement of the satellite as the 

lens scans [31]. No calibration or ancillary data are available. While the Corona data do not lend 

themselves to automated detection or extraction of tree cover because of their limited spectral 

resolution, they are a valuable source of information for visual interpretation [10] and, as such, have 

been used in local-scale land use and land cover change studies to extend the baseline back to the 

1960s [32–34]. Fields in the study area are mostly harvested by late January, which affords high 

contrast between darker trees and the brighter soil background. The distinction between trees and 

shrubs, however, can be challenging in the panchromatic realm and has to rely on observed differences 

in texture and brightness.  
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2.3. Data Preparation 

2.3.1. Orbview-Derived Reference Map 

In order to produce a reliable reference map of percent tree cover—that is, the percentage of tree 

canopy cover in a MODIS-sized pixel—we first had to accurately distinguish tree from non-tree pixels 

in the Orbview scenes. To this end, we computed the NDVI from the red and near infrared bands of 

the Orbview data (Figure 4a). As evergreen and semi-evergreen trees and shrubs were the only green 

vegetation present in the scenes in the late dry season, they clearly stood out against their surroundings 

by a higher NDVI. However, a minor number of deciduous trees present in the scene were leafless at 

the time of acquisition of the Orbview image and, hence, could not be detected by the NDVI. A simple 

decision tree classifier was used to find the most appropriate threshold to differentiate tree crowns 

from the smaller shrubs, the shadows and the soil background. An NDVI threshold of 0.5 was found to 

work best across the images and was applied to produce binary maps of tree versus non-tree cover for 

both scenes (Figure 4b), resulting in a classification accuracy of 95%, based on accuracy assessment of 

100 random points in the tree class and another 100 random points in the non-tree class. Only very few 

locations—burnt and irrigated areas misclassified as trees—were subsequently manually corrected in 

order to ensure an optimal reference dataset. The binary maps were then reprojected to match the 

eMODIS geographic projection and aggregated to the resolution of 250 m using bilinear resampling in 

order to yield maps of percent tree cover per MODIS pixel (Figure 4c). The two adjacent percent tree 

cover maps were mosaicked into one reference map for subsequent tree cover modeling. 

Figure 4. 1 km2 subset of (a) false-color composite of Orbview image, (b) extracted tree 

canopy cover superimposed on Orbview image, and (c) percent tree cover reference data at 

250 m resolution, aggregated from the extracted tree canopy cover (superimposed). Lowest 

percent tree cover is shown in light yellow, highest in dark green tones, see full color 

legend in figure in Section 3.2. 

 
(a) (b) (c) 

2.3.2. MODIS-Derived Input Variables 

The estimation of percent tree cover from eMODIS NDVI data depends on slight differences in 

overall greenness and seasonality between trees and non-tree land/soil cover types. The considerable 
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interannual variability in timing and amounts of rainfall, however, leads to an equally variable 

vegetation response from year to year, which can exceed the often subtle differences between land/soil 

cover types. In order to correct for the effects of rainfall variability, we averaged the NDVI of each 

compositing period over multiple years, with ten-year averages yielding the best results in the subsequent 

modeling effort. In this point, our approach differs from prior studies [10,11,12], which all rely on only one 

year of input data. We believe that the shortcoming of limiting any temporal change studies to 10-year 

periods is outweighed by the advantage of producing more accurate results for our area of interest. 

In addition to characterizing vegetation by the average NDVI per compositing period, we used the 

Timesat 3.0 software [35] to extract a number of phenological metrics from the eMODIS NDVI time 

series. The potential of using slight differences in phenological, or seasonality, characteristics of trees 

and grasses for modeling the distribution of those two growth forms in savanna environments is 

highlighted by Wagenseil and Samimi [36]. The metrics describe key parameters of the phenological 

curve and have been widely used in scientific applications, including mapping environmental changes 

in Africa [37–40]. Timesat fits local polynomial functions to time series of NDVI data, from which the 

metrics are extracted based on a definition for the start and end of the growing season, in our case a 

proportion (0.2) of the seasonal amplitude. The complete set of phenological metrics obtained from 

Timesat includes four seasonality metrics (dates of the start, end, and middle of the growing season, as 

well as length of the growing season), five magnitude metrics (base level NDVI, maximum NDVI, 

NDVI amplitude, small seasonal NDVI integral, large seasonal NDVI integral) and two change 

metrics (rate of increase of NDVI at the beginning of the growing season, rate of decrease of NDVI at 

the end of the growing season). We extracted all 11 metrics for each year of the time series and then 

computed the 10-year averages of each of them. 

In order to get a preliminary estimate of the most promising input data, we performed simple linear 

correlation analyses between the target percent tree cover from the reference map and each of the 

potential independent variables (average NDVI of 72 compositing periods and 11 phenological 

metrics). Although some variables showed higher correlations than others, with the peak of the dry 

season (January–February) compositing periods and the phenological metrics most strongly correlated 

with percent tree cover, we included the entire set of all compositing periods and phenological metrics 

in the final rule-based model. 

2.3.3. Georectification of Corona Image 

We manually oriented and georectified one Corona image in four segments, using 15–20 ground 

control points (GPCs) per segment (approximately 14 × 45 km) that could be identified in both the 

Corona image and Google Earth, such as road intersections. A second order polynomial warping 

procedure was then applied to each of the Corona image segments in order to rectify them to the 

geographic coordinate system using these GPCs [41]. As the topography of our study area is relatively 

flat, this method produced satisfactory results with locational errors ranging from 5 m to 30 m and a 

near seamless fit between the four image segments. 
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2.4. Rule-Based Modeling and Spatial Application 

A rule-based predictive model was developed, which estimated tree cover in the west central 

agricultural region of Senegal using a classification and regression tree (CART) approach [42]. The CART 

approach is a data mining method to inductively identify patterns between a dependent variable (the tree 

cover reference dataset) and a collection of independent predictor variables (the MODIS-derived coarse 

resolution input variables). A regression tree contains a set of conditional rules that partition the data 

space into smaller regions, each of which is linked to a multiple linear regression model predicting the 

dependent from the independent variables [43]. 

In a first step, the mosaicked reference map was divided into training and validation data by a 

stratified random sampling procedure, which resulted in 8,229 training pixels and 7,420 validation 

pixels spread evenly across the extent of the map. We then used the Cubist algorithm (Rulequest 

Research) for generating a rule-based regression tree from the training data and the corresponding 

independent predictor variables. To optimize the accuracy of the model prediction, committee models 

with 5–10 members—each representing one regression tree—were constructed, where each subsequent 

member adjusts for inaccuracies in the predictions of the previous member in a boosting-like scheme. 

The final modeling result is a simple average of the predictions of each committee member and yields 

higher overall accuracies than a model without the committee option [43]. 

The committee model resulting in the most accurate results for the training and validation data was 

then applied to the pixels of the entire study area, producing a map of estimated percent tree cover. 

Due to the nature of the input data, the resulting tree cover map represents the average tree cover for 

the period 2001 to 2010, which will be referred to as the current time period. 

2.5. Model Validation 

The model was evaluated by its performance on both the training data, which were used in 

generating the model, and the validation data, which the model had not seen before [44]. Three 

measures express different aspects of the model’s performance: (1) the linear correlation coefficient 

(Pearson product moment correlation coefficient R) between reference/target and model-estimated tree 

cover, a dimensionless measure of the strength of linear association between two variables; (2) the 

mean absolute error (MAE) between reference/target and model-estimated tree cover, which is 

unambiguous and therefore more appropriate as a dimensioned measure of average error than the root 

mean square error [45]; and (3) the relative error, here defined as the ratio of the mean absolute error to 

the error that would result from predicting the mean value of percent tree cover at each pixel. The 

latter expresses how useful the model is to meaningfully describe the modeled variable. 

A spatially explicit error layer (2nd figure in Section 3.2) was produced in conjunction with the map 

of model-estimated tree cover to show the spatial distribution of potential error beyond the area of the 

reference map, based on the estimated error of the rules used to predict each pixel value [42]. In 

addition to these quantitative measures of model accuracy, geographic patterns of model-estimated tree 

cover were visually compared to tree cover on recent (circa 2010) high resolution Google Earth 

imagery across the entire study area.  
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2.6. Change Detection Application 

We used a 200-km longitudinal transect, which traverses the study area from west to east at 

14.75°N (1st figure in Section 3.3), to compare tree cover at two different time periods and assess 

changes in spatial patterns. Model-estimated tree cover for the current time period was averaged over 

continuous 1 × 1 km sample areas along the transect. For the same sample areas, tree cover in the late 

1960s was visually estimated from the Corona imagery using a comparison chart for visual estimation 

of percent cover similar to charts used in ecological field research [46]. The sample size of 1 km2, 

rather than the 250 m resolution of the tree cover map, was chosen to better match the variability of 

tree cover across the transect and minimize the impact of geo-referencing inaccuracies.  

3. Results and Discussion 

3.1. Model Accuracy and Variables Used 

A 5-member committee model, which produced between 16 and 35 rules per committee member, 

was selected as the best model based on its performance on the training and validation data. For the 

training data, a correlation coefficient r of 0.88 between reference and model-estimated tree cover was 

achieved, with a mean absolute error of 1.07% tree cover and a relative error of 0.45. For the 

validation data, the correlation coefficient r was 0.77 and the mean absolute and relative errors 

amounted to 1.03% tree cover and 0.53 respectively. The correlation coefficients are highly 

significant, and the low absolute and relative errors indicate that the model performs well for both the 

training and unseen validation data. Figure 5 plots the observed or reference tree cover against model 

estimated tree cover and shows a good correspondence between the two datasets, with a slight 

tendency for underestimation of the model in the higher tree cover areas. The vast majority of pixels, 

however, are clustered in the lower tree cover areas (96% of the pixels in the training and validation 

data have a tree cover of ten percent and lower and 84% have a tree cover of five percent and lower). 

Table 1 details the distribution of error by tree cover categories in 5% increments. 

Figure 5. Graphs of observed and modeled percent tree cover for the training and 

validation datasets (MAE = Mean absolute error, RE = Relative error). 
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Table 1. Distribution of mean absolute errors (MAE) of estimated tree cover by categories 

(5% increments of observed/reference tree cover) for training and validation data 

(N=number of pixels per category). 

Tree Cover Category  MAE in Training Data MAE in Validation Data 
5% tree cover and less 0.74% (N = 6722) 0.81% (N = 6469) 

5%–10% tree cover 2.11% (N = 1049) 2.32% (N = 814) 

10%–15% tree cover 3.15% (N = 276) 3.70% (N = 119) 

15%–20% tree cover 3.21% (N = 129) 4.56% (N = 14) 

20% tree cover and more 6.68% (N = 54) 7.20% (N = 4) 

The independent variables contributed to the conditional rules and multiple linear regressions of the 

model to different extents. All but two variables were used by the model, with the growing season and 

early dry season compositing periods being used in more of the regressions than the late dry season 

compositing periods. As expected, the phenological metrics contributed quite importantly to the 

model. The start, end, and length of season metrics as well as the maximum NDVI, amplitude and 

small integral were used in over 90% of the model equations. However, building the model on the 

phenological metrics alone would have reduced model accuracy. 

3.2. Spatial Patterns of Tree Cover and Their Interpretation 

High model accuracy for the training and validation data does not guarantee equally good 

performance when the model is extrapolated to a larger area. However, with a mean of 4.7% tree cover 

and a majority of pixels falling into the 3%–4% tree cover range, the modeling results for the west 

central agricultural region appear realistic for this environment (Figure 6). Highest tree densities are 

found in the western part of the study area, in the peri-urban areas between Dakar and Thies and in the 

Niayes zone along the Atlantic coast. The proximity to urban markets and the vulnerability of annual 

crops to drought has given rise to the development of horticulture and arboriculture in these areas [47]. 

Fruit tree orchards contribute to the high tree cover found there. However, the model overestimated 

tree cover in some of the depressions of Niayes zone where intensive vegetable gardening 

predominates, due to phenological similarities with evergreen trees. Other areas of higher than average 

tree cover include the high density Faidherbia albida agricultural parklands in the Thies region, 

among them the homelands of the ethnic Serer, who have maintained this agroforestry system for 

centuries for its benefits to millet cultivation and cattle raising [48]. Localities of particularly high field 

tree cover were found east of Khombole (14.773°N, 16.663°W; 10%–15% tree cover), northwest of 

Tivouane (14.980°N, 16.861°W; 7%–10% tree cover), around Pekes (15.112°N, 16.416°W; 7%–15% 

tree cover), northeast of Mbour (14.486°N, 16.938°W; 7%–12% tree cover)—whereas east of Mbour 

tree cover seems overestimated. Depressions and riparian areas, for example the Sine valley, also stand 

out by denser tree cover than their surroundings. Across the entire map, an irregular dot pattern of high 

concentrations of trees indicates the presence of settlements. They are mainly shade trees, fruit trees 

and live fences as well as trees of cultural and spiritual significance, such as groves of baobab trees, by 

which long abandoned settlements are still identifiable. 
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Figure 6. Map of model estimated tree cover in the west central agricultural region of 

Senegal (a) Enlarged area shows reference tree cover, (b) modeled tree cover (c) and 

MODIS Vegetation Continuous Fields (VCF) product (Collection 5) of 2008 for the same 

area (d). The 2008 VCF product was chosen for display, because the VCF quality layers 

indicate that it is the best of the available 11 years of VCF data for this area. Reference and 

modeled tree cover range from 0 to 22%, whereas the VCF tree cover ranges from 0 to 3%. 

 
(a) 

(b) (c) 

(d) 

Overall, the map seems to accurately depict the spatial pattern of tree cover across the study area. It 

performs better for our area of interest than the MODIS Vegetation Continuous Fields (collection 5) 

product [49], which is aimed at showing patterns of tree cover at global to continental rather than 

regional to local scales. Some instances of overestimation of the tree cover in our map can be 

attributed to the challenge of distinguishing between trees and shrubs. Although we made an effort to 
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define a threshold for the reference map that includes trees and excludes smaller, less green shrubs, the 

model was not always successful in distinguishing between the two woody vegetation types. Another 

source of error is the presence of irrigation in horticulture, which results in a crop phenology 

resembling that of trees due to the prolonged growing season. Whereas errors might be highest in 

absolute terms in the high tree cover areas (Figure 7 and Table 1), in relative terms they are more 

significant where tree cover is lowest. This confirms findings by Hansen [17] that low tree cover is 

difficult to accurately estimate, as the soil background dominates over the tree signal. 

Figure 7. Error map showing the spatial distribution of potential error beyond the area of 

the reference map. For each pixel, the number represents the difference between the value 

that is predicted and the value that could exist, based on the estimated error of the rule 

created from the training data and used to predict the pixel value. 

 

3.3. Stability and Change Since 1968 

The map of tree cover provided a starting point for identifying areas of interest and examining 

change in tree cover over time. While we cannot apply the rule-based modeling approach to estimate 

tree cover at earlier time periods, for which MODIS data are not available, the Corona mission 

afforded us with a unique source of data from the late 1960s that could be exploited visually, on a 

sample basis. We compared current tree cover as estimated by the Cubist model, and verified on 

Google Earth, to tree cover visually interpreted from Corona imagery along a 200 km longitudinal 

transect (Figures 6, 8, and 9). The seven-sample moving average in Figure 8 reduces the effects of 

potential geolocational errors between the two data sources and flattens spikes caused by individual 

outliers, facilitating appreciation of the overall pattern of change, both in time and in space. 
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Figure 8. West-east transect of tree cover at 14.75°N. The current tree cover was modeled 

(see paragraph 2.4), and the 1968 tree cover was estimated visually from Corona images. 

The thicker lines represent 7-sample moving averages (averages of the data from point  

N − 3 to point N + 3 at each point N) of the original curves. 

 

Both curves in Figure 8 show a gradient of decreasing tree cover from west to east, though the 

gradient appears steeper in current times than in the late 1960s. In the westernmost part of the study 

area, current tree cover is considerably higher than in 1968 due to the expansion of arboriculture. From 

17.10°W to 17.00°W, current tree cover declines sharply. This corresponds to the area of the Protected 

Forest (forêt classée) of Thies, where tree cover has been decimated to almost zero as a result of the 

high demand for fuel wood by the growing urban populations [50]. What remains are smaller shrubs 

and patches of bare ground, as well as a phosphate surface mine at 17.00°W. In 1968, by contrast, 

parts of the forest still had relatively dense tree cover, making the 1968 curve peak in this area. Fruit 

tree orchards in the southeastern outskirts of the city of Thies cause another peak in current tree cover 

around 16.90°W, which exceeds field tree cover found there in 1968. From 16.80°W eastward, 

Faidherbia albida, which make up the traditional parkland tree cover, dominate. Field tree densities 

appear to have declined overall since 1968, but there are a few locations where they have been stable 

or even increasing, particularly in the vicinity of villages. The estimated average tree cover along the 

entire transect was 6.53% in 1968 and has dropped slightly to a current average of 5.75%—a decrease 

which could be within the margin of error of the estimation. The changes in the pattern of tree cover 

from a gentle to a steeper west-east gradient are more pronounced. Figure 9 illustrates increasing, 

stable and decreasing tree cover along the transect by contrasting high-resolution images of 1 × 1 km 

sites in 1968 and circa 2010.  
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Figure 9. Examples of increasing, stable and decreasing tree cover, contrasting current very 

high resolution satellite imagery (top row) and Corona images from 1968 (bottom row) for 

selected 1 km2 samples: (a) 14.76°N, 17.05°W, south of Pout in the region of Thies: 

arboriculture in formerly sparsely covered land, (b) 14.76°N, 16.66°W, east of Khombole in 

the region of Diourbel: relatively stable high tree density agricultural parkland (some of the 

smaller trees/shrubs have disappeared), (c) 14.78°N 16.1°W, west of Touba in the region of 

Diourbel: firewood needs of the city of Touba have led to a decline in tree cover. 

(a) (b) (c) 

3.4. Applicability to Other Geographic Areas 

Our results demonstrate that rule-based regression tree modeling has potential to estimate tree cover 

in dryland environments with acceptable accuracy, if high spatial resolution data can be obtained for a 

subset of the area of interest. The quality of results achievable with this modeling approach depends on 

the complexity of the landscape, the types of trees and their phenology, and the timing of acquisition 

of the very high resolution imagery. For the west-central agricultural region of Senegal, these three 

factors came together favorably to facilitate the production of a high quality tree cover map: (1) the 

landscape is rather uniform and has little relief; (2) the dominant tree, Faidherbia albida, is in full leaf 

in the dry season when other green vegetation is largely absent; and (3) Orbview images were 

available during the peak of the dry season. Preliminary analyses applying the same modeling 

approach in a similar environment in Northern Ghana show promising results, albeit of slightly lower 

accuracy than for the Senegal case owing to difficulties of deriving an equally accurate reference map in 
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this more complex environment with an undulating relief. However, the spatial pattern of tree cover 

derived from the locally-calibrated rule-based model is more realistic than that of the global VCF dataset 

for the same region, corroborating the importance of locally calibrated tree cover maps. It remains to be 

examined whether including ancillary data, such as elevation, slope, and soil type, would help improve 

the accuracy of the reference map and of the model-estimated tree cover in more complex landscapes, 

where diversity of relief, soils, and vegetation make extracting tree cover more challenging. 

4. Conclusions 

We produced a map of tree cover for the west-central agricultural region of Senegal by training a 

rule-based model with an Orbview-derived reference dataset to estimate percent tree cover from 

coarser resolution eMODIS data. The estimated accuracy of this locally calibrated map—with absolute 

mean errors of just above 1% tree cover—exceeds that of any regional or global percent tree cover 

products known to us. That is, it reliably identifies pockets of high tree cover within the agricultural 

parkland as well as areas where field trees are virtually absent. Potential errors of estimation were 

highest in the high tree cover areas in absolute terms and in the low tree cover areas in relative terms. 

A comparison of current tree cover with historic cover along a transect shows a slight overall decrease 

in tree cover from an average of 6.53% to 5.75% over the past four decades; however, this decrease is 

not uniform in space and there are areas where tree cover has remained stable or even increased, in 

some locations dramatically. The most striking increases are mostly explained by the expansion of 

fruit tree plantations in the vicinity of urban centers. Areas where Faidherbia albida field tree cover 

was maintained or increased might indicate success stories of good land management practices by rural 

communities. Understanding the motivations and benefits of maintaining or promoting field trees in 

these communities could help upscale such success stories to other communities, which face similar 

environmental and economic conditions but have maintained fewer field trees. Due to its higher 

accuracy than readily available global tree cover products, this tree cover map can be used to guide 

ground studies to investigate the driving forces behind the spatial and temporal variability of field tree 

cover in this agricultural parkland and help identify areas that might particularly benefit from outreach 

activities and resource management interventions. It also lends itself as a baseline for longer term 

monitoring of tree cover, e.g., at decadal intervals, including long term evaluation of reforestation 

projects. Changes at shorter time intervals, however, cannot be resolved. Considering that trees are a 

slow variable, as opposed to the herbaceous cover, the constraints resulting from this are limited. 
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