Next Article in Journal
Previous Article in Journal
Remote Sens. 2010, 2(1), 151-165; doi:10.3390/rs2010151
Article

Application of Remote-sensing Data and Decision-Tree Analysis to Mapping Salt-Affected Soils over Large Areas

1,2
 and 1,*
Received: 22 October 2009; in revised form: 20 December 2009 / Accepted: 21 December 2009 / Published: 30 December 2009
Download PDF [1195 KB, uploaded 19 June 2014]
Abstract: Expert assessments for crop and range productivity of very-large arid and semiarid areas worldwide are ever more in demand and these studies require greater sensitivity in delineating the different grades or levels of soil salinity. In conjunction with field study in arid southeastern Oregon, we assess the merit of adding decision-tree analysis (DTA) to a commonly used remote-sensing method. Randomly sampled surface soil horizons were analyzed for saturation percentage, field capacity, pH and electrical conductivity (EC). IFSAR data were acquired for terrain analysis and surficial geological mapping, followed by derivation of layers for analysis. Significant correlation was found between EC values and surface elevation, bands 1, 2, 3 and 4 of the Landsat TM image, and brightness and wetness indices. Maximum-likelihood supervised classification of the Landsat images yields two salinity classes: non-saline soils (EC < 4 dSm–1), prediction accuracy of 97%, and saline soils (EC < 4 dSm–1), prediction accuracy 60%. Addition of DTA results in successful prediction of five classes of soil salinity and an overall accuracy of about 99%. Moreover, the calculated area of salt-affected soil was overestimated when mapped using remote sensing data only compared to that predicted by additionally using DTA. DTA is a promising approach for mapping soil salinity in more productive and accurate ways compared to only using remote-sensing analysis.
Keywords: soil salinity; digital soil mapping; remote sensing; IFSAR; geostatistics; decision-tree analysis soil salinity; digital soil mapping; remote sensing; IFSAR; geostatistics; decision-tree analysis
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Elnaggar, A.A.; Noller, J.S. Application of Remote-sensing Data and Decision-Tree Analysis to Mapping Salt-Affected Soils over Large Areas. Remote Sens. 2010, 2, 151-165.

AMA Style

Elnaggar AA, Noller JS. Application of Remote-sensing Data and Decision-Tree Analysis to Mapping Salt-Affected Soils over Large Areas. Remote Sensing. 2010; 2(1):151-165.

Chicago/Turabian Style

Elnaggar, Abdelhamid A.; Noller, Jay S. 2010. "Application of Remote-sensing Data and Decision-Tree Analysis to Mapping Salt-Affected Soils over Large Areas." Remote Sens. 2, no. 1: 151-165.


Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert