Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Plot Description and Soil Sampling
2.3. Soil Microbial Biomass Carbon
2.4. Soil Microbial Community Carbon Sources Utilization Pattern
2.5. Plate Counts of Culturable Microorganisms and Enzyme Analysis
2.6. Soil Properties Analysis
2.7. Statistical Analyses
3. Results
3.1. Effects of Grazing and Cultivation on SOC Stock and Plant Biomass
3.2. The Effects of Grazing and Cultivation on Soil Microbial Biomass Carbon, Colony Forming Units, and Urease and Invertase Activities
3.3. The Effects of Grazing and Cultivation on Soil Microbial Community Functional Diversity
4. Discussion
4.1. Effects of Grazing and Cultivation on SOC Stock
4.2. Effects of Grazing and Cultivation on MBC
4.3. The Effects of Grazing and Cultivation on Soil Microbial Community Functional Diversity
4.4. The Implications of the Findings
5. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Scurlock, J.; Hall, D. The global carbon sink: A grassland perspective. Glob. Chang. Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Biogeochemistry: An Analysis of Global Change; Academic Press: New York, NY, USA, 1997; p. 44. [Google Scholar]
- Yang, Y.; Fang, J.; Ma, W.; Smith, P.; Mohammat, A.; Wang, S.; Wang, W. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Glob. Chang. Biol. 2010, 16, 3036–3047. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, W.J.; Zhang, W.; Yu, Y.Q.; Wei, Y.R. Study on carbon budget in grassland of China: Progress and perspectives. Quatern. Sci. 2010, 30, 456–465. [Google Scholar]
- Su, Y.Z.; Li, Y.L.; Cui, H.Y.; Zhao, W.Z. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena 2005, 59, 267–278. [Google Scholar]
- Yang, Y.F.; Wu, L.W.; Lin, Q.Y.; Yuan, M.T.; Xu, D.P.; Yu, H.; Hu, Y.G.; Duan, J.C.; Li, X.Z.; He, Z.L. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob. Chang. Biol. 2013, 19, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Raiesi, F.; Riahi, M. The influence of grazing exclosure on soil c stocks and dynamics, and ecological indicators in upland arid and semi-arid rangelands. Ecol. Ind. 2014, 41, 145–154. [Google Scholar] [CrossRef]
- Wang, Q.L.; Wang, C.T.; Du, Y.G.; Cao, G.M. Grazing impact on soil microbial biomass carbon and relationships with soil environment in alpine Kobresia meadow. Acta Pratacult. Sin. 2008, 17, 39–46. [Google Scholar]
- Zhu, G.Y.; Deng, L.; Zhang, X.B.; Shang, Z.P. Effects of grazing exclusion on plant community and soil physicochemical properties in a desert steppe on the Loess Plateau, China. Ecol. Eng. 2016, 90, 372–381. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland management and conversion into grassland: Effects on soil carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Jackson, R.B.; Canadell, J.; Ehleringer, J.R.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. A global analysis of root distributions for terrestrial biomes. Oecologia 1996, 108, 389–411. [Google Scholar] [CrossRef]
- Jones, M.B.; Donnelly, A. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 2004, 164, 423–439. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhao, H.L.; Zhang, T.H.; Zhao, X.Y. Soil properties following cultivation and non-grazing of a semi-arid sandy grassland in northern China. Soil Tillage Res. 2004, 75, 27–36. [Google Scholar] [CrossRef]
- Qi, Y.C.; Dong, Y.S.; Peng, Q.; Xiao, S.S.; He, Y.T.; Liu, X.C.; Sun, L.J.; Jia, J.Q.; Yang, Z.J. Effects of a conversion from grassland to cropland on the different soil organic carbon fractions in Inner Mongolia, China. J. Geogr. Sci. 2012, 22, 315–328. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Garland, J.L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential c source utilization. Soil Biol. Biochem. 1996, 28, 213–221. [Google Scholar] [CrossRef]
- Zak, J.C.; Willig, M.R.; Moorhead, D.L.; Wildman, H.G. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 1994, 26, 1101–1108. [Google Scholar] [CrossRef]
- Guan, S.Y.; Zhang, D.S.; Zhang, Z.M. Soil Enzymes and Its Methodology; Agricutural Press: Beijing, China, 1986. [Google Scholar]
- Lu, R.K. Soil and Agro-Chemical Aalytical Methods; China Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- He, N.P.; Zhang, Y.H.; Dai, J.Z.; Han, X.G.; Yu, G.R. Losses in carbon and nitrogen stocks in soil particle-size fractions along cultivation chronosequences in Inner Mongolian grasslands. J. Environ. Qual. 2012, 41, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.B.; Zhu, J.G.; Liu, G.; Cadisch, G.; Hasegawa, T.; Chen, C.M.; Sun, H.F.; Tang, H.Y.; Zeng, Q. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Chang. Biol. 2007, 13, 1989–2007. [Google Scholar] [CrossRef]
- Beniston, J.W.; DuPont, S.T.; Glover, J.D.; Lal, R.; Dungait, J.J. Soil organic carbon dynamics 75 years after land-use change in perennial grassland and annual wheat agricultural systems. Biogeochemistry 2014, 120, 37–49. [Google Scholar] [CrossRef]
- Ingram, L.J.; Stahl, P.D.; Schuman, G.E.; Buyer, J.S.; Vance, G.F.; Ganjegunte, G.K.; Welker, J.M.; Derner, J.D. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Sci. Soc. Am. J. 2008, 72, 939–948. [Google Scholar] [CrossRef]
- Shang, Z.H.; Cao, J.J.; Guo, R.Y.; Long, R.J.; Deng, B. The response of soil organic carbon and nitrogen 10 years after returning cultivated alpine steppe to grassland by abandonment or reseeding. Catena 2014, 119, 28–35. [Google Scholar] [CrossRef]
- Sarathchandra, S.U.; Ghani, A.; Yeates, G.W.; Burch, G.; Cox, N.R. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biol. Biochem. 2001, 33, 953–964. [Google Scholar] [CrossRef]
- Frazão, L.A.; Piccolo, M.C.; Feigl, B.J.; Cerri, C.C.; Cerri, C.P. Inorganic nitrogen, microbial biomass and microbial activity of a sandy Brazilian Cerrado soil under different land uses. Agric. Ecosyst. Environ. 2010, 135, 161–167. [Google Scholar] [CrossRef]
- Liu, W.X.; Zhang, Z.; Wan, S.Q. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Chang. Biol. 2009, 15, 184–195. [Google Scholar] [CrossRef]
- Xu, X.F.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Paterson, E. Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur. J. Soil Sci. 2003, 54, 741–750. [Google Scholar] [CrossRef]
- Kemmitt, S.J.; Wright, D.; Goulding, K.W.; Jones, D.L. Ph regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 2006, 38, 898–911. [Google Scholar] [CrossRef]
- Wang, A.S.; Angle, J.S.; Chaney, R.L.; Delorme, T.A.; McIntosh, M. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol. Biochem. 2006, 38, 1451–1461. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Wardle, D.A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 2003, 84, 2258–2268. [Google Scholar] [CrossRef]
- Bissett, A.; Richardson, A.E.; Baker, G.; Thrall, P.H. Long-term land use effects on soil microbial community structure and function. Appl. Soil Ecol. 2011, 51, 66–78. [Google Scholar] [CrossRef]
- Murugan, R.; Loges, R.; Taube, F.; Sradnick, A.; Joergensen, R.G. Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland. Microb. Ecol. 2014, 67, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Wallenstein, M.D.; McNulty, S.; Fernandez, I.J.; Boggs, J.; Schlesinger, W.H. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For. Ecol. Manag. 2006, 222, 459–468. [Google Scholar] [CrossRef]
- Nautiyal, C.S.; Chauhan, P.S.; Bhatia, C.R. Changes in soil physico-chemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem. Soil Tillage Res. 2010, 109, 55–60. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, Y.J.; Chang, S.J.; Kan, H.M.; Lin, L.J. Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia. PLoS ONE 2012, 7, e36434. [Google Scholar] [CrossRef] [PubMed]
Ungrazed | Grazed | Grassland | Wheat Field | |
---|---|---|---|---|
Latitude | 43°32′N | 43°26′N | 43°30′N | 43°31′N |
Longitude | 116°40′E | 116°04′E | 116°49′E | 116°49′E |
Altitude (m) | 1265 | 1343 | ||
Soil type (US classification) | Calcic-orthic Aridisol | Calciboroll | ||
Average temperature in January (°C) | −21.6 | −19.9 | ||
Average temperature in July (°C) | 19.0 | 18.0 | ||
Annual mean temperature (°C) | 0.6 | −1.4 | ||
Annual precipitation (mm) | 341 | 450 | ||
≥10 °C accumulated temperature (°C) | 1800–2000 | 1600–1800 | ||
a Representative grass species | Leymus chinensis, Stipa grandis, Agropyron michnoi | Stipa baicalensis, Filifolium sibiricum, Carex pediformis, Leymus chinensis, Achnatherum sibiricum |
Soil Parameters | Soil Depths | Grazing | Cultivation | ||
---|---|---|---|---|---|
Ungrazed | Grazed | Grassland | Wheat Field | ||
SOC (%) | 0–10 cm | 2.31 ± 0.12 a,A | 1.75 ± 0.05 b,A | 2.23 ± 0.12 a,A | 1.81 ± 0.05 b,A |
10–20 cm | 1.55 ± 0.02 a,B | 1.24 ± 0.04 b,B | 2.54 ± 0.12 a,A | 1.81 ± 0.05 b,A | |
SOC stock (Mg·ha−1) | 0–10 cm | 25.92 ± 1.31 a,A | 21.35 ± 0.65 b,A | 27.17 ± 1.43 a,B | 20.94 ± 0.55 b,B |
10–20 cm | 20.96 ± 0.32 a,B | 16.06 ± 0.91 a,B | 31.50 ± 1.51 a,A | 24.07 ± 0.67 b,A | |
TN (g·kg−1) | 0–10 cm | 1.87 ± 0.17 a,A | 1.54 ± 0.11 a,A | 1.82 ± 0.08 a,A | 1.74 ± 0.08 a,A |
10–20 cm | 1.28 ± 0.04 a,B | 1.31 ± 0.08 a,A | 1.84 ± 0.10 a,A | 1.61 ± 0.09 b,A | |
C:N ratio | 0–10 cm | 12.83 ± 0.65 a,A | 11.94 ± 0.77 a,A | 12.39 ± 0.62 a,A | 10.58 ± 0.49 b,A |
10–20 cm | 12.26 ± 0.39 a,A | 9.59 ± 0.46 b,B | 14.05 ± 0.63 a,A | 11.56 ± 0.57 b,A | |
pH (H2O) | 0–10 cm | 7.17 ± 0.04 b,A | 7.37 ± 0.07 a,B | 7.43 ± 0.06 a,A | 7.12 ± 0.05 b,A |
10–20 cm | 7.22 ± 0.01 b,A | 7.62 ± 0.04 a,A | 7.26 ± 0.07 a,A | 7.05 ± 0.03 b,A | |
Soil water content (%) | 0–10 cm | 13.47 ± 2.46 a,A | 8.47 ± 1.51 b,A | 12.28 ± 1.80 b,A | 13.29 ± 1.99 a,A |
10–20 cm | 8.97 ± 0.39 a,A | 6.49 ± 0.86 b,A | 12.08 ± 0.61 b,A | 14.22 ± 1.50 a,A | |
NO3− (mg·kg−1) | 0–10 cm | 6.20 ± 1.37 a,A | 9.25 ± 2.33 a,A | 4.72 ± 0.94 b,A | 10.33 ± 1.13 a,B |
10–20 cm | 2.45 ± 0.28 b,B | 4.34 ± 0.48 a,B | 3.80 ± 0.69 b,A | 18.28 ± 2.42 a,A | |
NH4+ (mg·kg−1) | 0–10 cm | 4.55 ± 0.48 a,A | 2.95 ± 0.33 b,A | 4.07 ± 0.31 a,A | 4.22 ± 0.67 a,A |
10–20 cm | 4.31 ± 0.59 a,A | 2.76 ± 0.33 b,A | 5.08 ± 0.63 a,A | 3.02 ± 0.37 b,A | |
Bulk density (g·cm−3) | 0–10 cm | 1.13 ± 0.06 b,B | 1.21 ± 0.01 a,B | 1.22 ± 0.01 a,A | 1.16 ± 0.05 a,B |
10–20 cm | 1.35 ± 0.01 a,A | 1.30 ± 0.02 b,A | 1.24 ± 0.01 b,A | 1.33 ± 0.01 a,A |
Plant Biomass (g·m−2) | Grazing | Cultivation | ||
---|---|---|---|---|
Ungrazed | Grazed | Grassland | Wheat Field | |
Aboveground biomass | 333.09 ± 32.96 a | 57.09 ± 8.70 b | 178.75 ± 22.62 b | 345.64 ± 90.81 a |
Belowground biomass | 1272.24 ± 50.60 a | 1066.04 ± 47.72 b | 1751.66 ± 112.18 a | 21.28 ± 4.95 b |
Dependents | Grazing | Cultivation | |||
---|---|---|---|---|---|
Variables Related | R2 | Variables Related | R2 | ||
0–10 cm | MBC | SOC, pH | 0.685 *** | SOC | 0.284 * |
Bacteria | WC a, C:N, NO3−, TN | 0.879 *** | WC, C:N | 0.726 *** | |
Fungi | NO3− | 0.300 ** | SOC, WC | 0.792 *** | |
Actinomycetes | WC, NO3−, | 0.485 *** | SOC, pH | 0.659 *** | |
Urease | SOC, pH | 0.429 ** | NO3− | 0.573 *** | |
Invertase | SOC, WC, NO3− | 0.804 *** | SOC, pH, NH4+ | 0.712 *** | |
AWCD | NH4+ | 0.968 *** | NO3− | 0.714 *** | |
H | NH4+ | 0.922 *** | pH | 0.876 ** | |
10–20 cm | MBC | WC | 0.684 *** | — | — |
Bacteria | WC, pH, NH4+ | 0.931 *** | SOC, WC | 0.594 *** | |
Fungi | WC, NO3−, NH4+ | 0.787 *** | WC | 0.458 *** | |
Actinomycetes | NH4+ | 0.394 *** | SOC | 0.348 ** | |
Urease | pH, NH4+, NO3− | 0.781 *** | — | — | |
Invertase | pH, NO3− | 0.740 *** | SOC, pH | 0.840 *** |
Treatments | Actinomycetes (×106) | Bacteria (×106) | Fungi (×103) | |||
---|---|---|---|---|---|---|
0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | |
Grazing | ||||||
Ungrazed | 1.62 ± 0.15 a,A | 1.11 ± 0.10 a,B | 2.37 ± 0.28 a,A | 1.90 ± 0.25 a,A | 8.17 ± 1.60 a,A | 3.72 ± 0.58 a,B |
Grazed | 1.48 ± 0.11 a,A | 0.75 ± 0.06 b,B | 1.78 ± 0.29 b,A | 0.92 ± 0.19 b,B | 4.92 ± 0.73 b,A | 1.56 ± 0.34 b,B |
Cultivation | ||||||
Grassland | 0.89 ± 0.12 b,A | 0.85 ± 0.05 b,A | 1.44 ± 0.26 b,A | 1.20 ± 0.23 b,A | 5.20 ± 1.67 a,A | 3.86 ± 1.11 a,A |
Wheat field | 1.46 ± 0.16 a,A | 1.68 ± 0.12 a,A | 2.34 ± 0.16 a,A | 2.25 ± 0.17 a,A | 1.50 ± 0.22 b,A | 2.65 ± 0.54 a,A |
Significance of grazing | ||||||
Grazing (G) | 13.24 ** | 91.39 *** | 112.99 *** | |||
Depth (D) | 82.08 *** | 66.10 *** | 235.91 *** | |||
Sampling Time (T) | 11.26 *** | 108.50 *** | 65.00 *** | |||
G × D × T | 5.70 ** | 13.51 *** | 56.74 *** | |||
Significance of cultivation | ||||||
Cultivation (C) | 98.07 *** | 139.25 *** | 27.94 *** | |||
Depth (D) | 1.70 | 3.90 | 0.04 | |||
Sampling Time (T) | 8.27 *** | 54.69 *** | 31.84 *** | |||
C × D × T | 3.50 * | 2.01 | 14.71 *** |
Indexes | Grazing | Cultivation | ||
---|---|---|---|---|
Ungrazed | Grazed | Grassland | Wheat Field | |
AWCD a | 0.74 ± 0.05 a | 0.19 ± 0.03 b | 0.39 ± 0.07 b | 0.86 ± 0.14 a |
H b | 2.89 ± 0.02 a | 2.10 ± 0.17 b | 2.65 ± 0.06 b | 3.08 ± 0.07 a |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Xu, M.; Qi, Y.; Dong, Y.; He, X.; Li, J.; Liu, X.; Sun, L. Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland. Sustainability 2017, 9, 128. https://doi.org/10.3390/su9010128
He Y, Xu M, Qi Y, Dong Y, He X, Li J, Liu X, Sun L. Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland. Sustainability. 2017; 9(1):128. https://doi.org/10.3390/su9010128
Chicago/Turabian StyleHe, Yating, Minggang Xu, Yuchun Qi, Yunshe Dong, Xinhua He, Jianwei Li, Xinchao Liu, and Liangjie Sun. 2017. "Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland" Sustainability 9, no. 1: 128. https://doi.org/10.3390/su9010128
APA StyleHe, Y., Xu, M., Qi, Y., Dong, Y., He, X., Li, J., Liu, X., & Sun, L. (2017). Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland. Sustainability, 9(1), 128. https://doi.org/10.3390/su9010128