Next Article in Journal
Issues of Application of Machine Learning Models for Virtual and Real-Life Buildings
Previous Article in Journal
The Qualities Needed for a Successful Collaboration: A Contribution to the Conceptual Understanding of Collaboration for Efficient Public Transport
Article Menu

Export Article

Open AccessArticle
Sustainability 2016, 8(6), 539; doi:10.3390/su8060539

Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems

1
Center for Energy & Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA
2
Department of Civil & Environmental Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
3
Department of Mechanical Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Francesco Asdrubali
Received: 28 March 2016 / Revised: 18 May 2016 / Accepted: 1 June 2016 / Published: 8 June 2016
View Full-Text   |   Download PDF [539 KB, uploaded 8 June 2016]   |  

Abstract

This study evaluated the life cycle greenhouse gas (GHG) emissions from different hydroelectricity generation systems by first performing a comprehensive review of the hydroelectricity generation system life cycle assessment (LCA) studies and then subsequent computation of statistical metrics to quantify the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh). A categorization index (with unique category codes, formatted as “facility type-electric power generation capacity”) was developed and used in this study to evaluate the life cycle GHG emissions from the reviewed hydroelectricity generation systems. The unique category codes were labeled by integrating the names of the two hydro power sub-classifications, i.e., the facility type (impoundment (I), diversion (D), pumped storage (PS), miscellaneous hydropower works (MHPW)) and the electric power generation capacity (micro (µ), small (S), large (L)). The characterized hydroelectricity generation systems were statistically evaluated to determine the reduction in corresponding life cycle GHG emissions. A total of eight unique categorization codes (I-S, I-L, D-µ, D-S, D-L, PS-L, MHPW-µ, MHPW-S) were designated to the 19 hydroelectricity generation LCA studies (representing 178 hydropower cases) using the proposed categorization index. The mean life cycle GHG emissions resulting from the use of I-S (N = 24), I-L (N = 8), D-µ (N = 3), D-S (N = 133), D-L (N = 3), PS-L (N = 3), MHPW-µ (N = 3), and MHPW-S (N = 1) hydroelectricity generation systems are 21.05 gCO2e/kWh, 40.63 gCO2e/kWh, 47.82 gCO2e/kWh, 27.18 gCO2e/kWh, 3.45 gCO2e/kWh, 256.63 gCO2e/kWh, 19.73 gCO2e/kWh, and 2.78 gCO2e/kWh, respectively. D-L hydroelectricity generation systems produced the minimum life cycle GHGs (considering the hydroelectricity generation system categories with a representation of at least two cases). View Full-Text
Keywords: life cycle assessment; greenhouse gas emissions; hydro energy; impoundment; diversion; pumped storage; miscellaneous hydropower works; electricity generation life cycle assessment; greenhouse gas emissions; hydro energy; impoundment; diversion; pumped storage; miscellaneous hydropower works; electricity generation
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kadiyala, A.; Kommalapati, R.; Huque, Z. Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems. Sustainability 2016, 8, 539.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top