Review of Display Technologies Focusing on Power Consumption
Abstract
:1. Introduction
2. Scope of the Study
Power Consumption Level | Power density (mW/cm2) |
---|---|
High | >250 |
Medium | 100–250 |
Low | 10–100 |
Ultra-low | 0–10 |
3. Characterization of Displays
- The brightness, which is defined as the level of light intensity perceived by the viewer. It is estimated by the luminance or the amount of light emitted from a source in a given direction and it is measured in candela per square meter or nits. The contrast is also considered, determined as the ratio (CR) between the luminance of the brightness and the darkest color that the display is capable of producing.
- The information content of a display, which is established as the total number of pixels, the size of them (resolution) and the size of the display (typically given by the diagonal length in inches). It is also common to provide the aspect ratio—proportion between the width and the height of the screen—and the screen area (normally measured in square centimeters).
- Other characteristics that can be influential in the consumption are the number of colors that the display can show and the angle of view (VA)—formally defined as the angle at which the viewer has to be positioned in relation to the screen in order to clearly see the image on a display.
4. Low and Ultra-Low Power Consumption Microdisplay Technologies
4.1. Liquid Crystal Display (LCD)
Type | Model | Diag. Size (in) | Weight (g) | Brightness (cd/m2) | CR | VA | Power (mW) |
---|---|---|---|---|---|---|---|
PMLCD (STN) | F-55471GNFJ [28] | 5.2 | 75.1 | 72 | 5:1 | 90 | 615 |
a-Si TFT (TN) | A015AN04 [29] | 1.5 | 6 | 170 | 150:1 | 80 | 197 |
a-Si TFT (VA) | AM-240320LFTZQW-00H [30] | 2.4 | TBD | 400 | 450:1 | 160 | 272 |
a-Si TFT (IPS) | TX15D02VM0CAA [31] | 5.8 | 175 | 450 | 800:1 | 170 | 4900 |
CG-S TFT | LS037V7DD06 [32] | 3.7 | 39 | 100 | 100:1 | 80 | 490 |
LTPS TFT | ANDpSi025TH [33,34] | 2.5 | 15 | 250 | 300:1 | 80 | 216 |
4.2. Electronic Paper (E-Paper)
Type | Model | Diag. Size (in) | Weight (g) | CR | VA | Power (mW) |
---|---|---|---|---|---|---|
EPD | GDE021A1 [50] | 2.1 | 4 | 7:1 | 180 | 24 |
Pearl EPD | ED060SCE [51] | 6 | 34 | 12:1 | 180 | 240 |
ChLCD | LCD-09559 [52] | 5.5 | 105 | 25:1 | 180 | 150 |
EWD | Liquavista prototype (Amazon) [53] | 2.5 | TBD | 18:1 | 180 | 87 |
4.3. Organic Light-Emitting Display (OLED)
Type | Model | Diag. Size (in) | Weight (g) | Brightness (cd/m2) | CR | VA | Power (mW) |
---|---|---|---|---|---|---|---|
AM-OLED | C0201QILK-C [63] | 2 | 6 | 190 | 10000:1 | 170 | 170 |
AM-OLED | USMP-A34480TP (Chi Mei El. Corp) [64] | 3.4 | 30.1 | 160 | 10000:1 | 170 | 500 |
PM-OLED | microOLED-160-G2 [65] | 1.7 | 13 | 100 | 5000:1 | 160 | 100 |
PM-OLED | RGS32256064WH002 [66] | 3.2 | 11 | 70 | 2000:1 | 160 | 616 |
4.4. Electroluminescent Display (ELD)
Type | Model | Diag. Size (in) | Weight (g) | Brightness (cd/m2) | CR | VA | Power (mW) |
---|---|---|---|---|---|---|---|
AMEL | VGA prototype (Planar) [67] | 0.758 | 2.1 | 342 | 100:1 | 160 | 400 |
TDEL | TDEL prototype (TDK Corp) [71] | 4.25 | 284 | 200 | 3:1 | 180 | 10,000 |
TFEL | EL320.240.36 HB [72] | 5.7 | 180 | 150 | 90:1 | 160 | 3500 |
TFEL | LJ32H028 [73] | 4.7 | 270 | 200 | 300:1 | 160 | 5000 |
5. Results and Discussion
Parameter | STN-LCD | TFT-LCD | EPD | OLED | ELD | |
---|---|---|---|---|---|---|
Power Consumption | Typ. (mW) * | 100–200 | 200–300 | 25–50 | 150–200 | 1500–2000 |
Max. (mW) * | 1000 | 300 | 100 | 1000 | 5000 | |
Proportional to size | NO | NO | YES | YES | YES | |
Stable state | YES | YES | NO | YES | YES | |
Black image | YES | YES | NO | NO | NO | |
Backlight | YES | YES | NO | NO | NO | |
Power saving mode | NO | YES | NO | YES | YES | |
Unit cost | Low | Medium | Medium/high | Medium/high | High | |
Main applications | Cheap electronics, toys | Wide range applications | E-book, watches | Mobile | Embedded devices | |
Weak points | Resolution | Visual quality | Color, response time | Lifespan | Size, consumption |
6. Applications and Trends
7. Conclusions and Future Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Cranston, G.R.; Hammond, G.P. Egalite, fraternite, sustainabilite: Evaluating the significance of regional affluence and population growth on carbon emissions. Int. J. Glob. Warm. 2010, 2, 189–210. [Google Scholar]
- Fehske, A.; Fettweis, G.; Malmodin, J.; Biczok, G. The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 2011, 49, 55–62. [Google Scholar]
- Gielen, D. Energy Technology Perspectives; Paris International Energy Agency: Paris, France, 2008. [Google Scholar]
- Carroll, A.; Heiser, G. An Analysis of Power Consumption in a Smartphone. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference, Boston, MA, USA, 23–25 June 2010; p. 21.
- Pitt, M.G.; Zehner, R.W.; Amudson, K.R.; Gates, H. 53.2: Power Consumption of Micro-Encapsulated Display for Smart Handheld Applications; SID Symposium Digest Technical Papers; Wiley: Hoboken, NJ, USA, 2002; Volume 33, pp. 1378–1381. [Google Scholar]
- Simunic, T.; Benini, L.; Glynn, P.; De Micheli, G. Event-driven power management. Comput. Aided. Des. Integr. Circuits Syst. IEEE Trans. 2001, 20, 840–857. [Google Scholar]
- Kimmel, J. Energy Aspects of Mobile Display Technology. In Handbook of Visual Display Technology; Springer: Berlin, Germany, 2012; pp. 2023–2030. [Google Scholar]
- Myers, R.L.; Wiley, J. Display Interfaces: Fundamentals and Standards; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- International Committee for Display Metrology Information Display Metrology Standard Website. Available online: http://icdm-sid.org/ (accessed on 31 July 2015).
- SID, The Society for Information Display Website. Available online: http://www.sid.org/ (accessed on 31 July 2015).
- Mendicino, L. Environmental Issues with Materials and Processes for the Electronics and Semiconductor Industries: Proceedings of the Fourth International Symposium; The Electrochemical Society: Pennington, NJ, USA, 2001. [Google Scholar]
- Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. Available online: http://shop.bsigroup.com/upload/Shop/Download/PAS/PAS2050.pdf (accessed on 8 August 2015).
- Smil, V. Energy in Nature and Society: General Energetics of Complex Systems; MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Japan Display Inc. Available online: http://www.j-display.com/english/ (accessed 31 July 2015).
- The German Flat Panel Display Forum. Available online: http://www.displayforum.de/ (accessed on 31 July 2015).
- Grand View Research Inc. Microdisplays Market Analysis, Market Size, Application Analysis, Regional Outlook, Competitive Strategies and Forecasts, 2015 To 2022. Available online: http://www.grandviewresearch.com/industry-analysis/microdisplays-market (accessed on 31 July 2015).
- Bray, M. Review of Computer Energy Consumption and Potential Savings; Dragon System Software Ltd. (DssW): Hereford, UK, 2006. [Google Scholar]
- Talin, A.A.; Dean, K.A.; Jaskie, J.E. Field Emission Displays: A critical review. Solid-State Electron. 2001, 45, 963–976. [Google Scholar]
- Kariyawasam, T. Field Emission of Carbon Nanotubes. Available online: http://www.phys.lsu.edu/~jarrell/COURSES/ELECTRODYNAMICS/Student_Projects/tharanga/review.pdf (accessed on 6 August 2015).
- Komoda, T.; Koshida, N. Nanocrystalline Silicon Ballistic Electron Emitter. In Device Applications of Silicon Nanocrystals and Nanostructures; Springer: Berlin, Germany, 2009; pp. 251–291. [Google Scholar]
- Yamamoto, K.; Nomura, I.; Yamazaki, K.; Uzawa, S.; Hatanaka, K. 71.2: Fabrication and Characterization of Surface Conduction Electron Emitters; SID Symposium Digest of Technical Papers; Wiley: Hoboken, NJ, USA, 2005; Volume 36, pp. 1933–1935. [Google Scholar]
- Betsui, K. Advanced manufacturing technologies on color plasma displays. SPIE 2000. [Google Scholar] [CrossRef]
- Armitage, D.; Underwood, I.; Wu, S.-T. Introduction to Microdisplays; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Reinitzer, F. Beiträge zur kenntniss des cholesterins. Monatshefte. Chem. Chem. Mon. 1888, 9, 421–441. [Google Scholar]
- Kim, K.-H.; Song, J.-K. Technical evolution of Liquid Crystal Displays. NPG Asia Mater. 2009, 1, 29–36. [Google Scholar]
- Lee, J.; Kim, D.; Yang, D.; Hong, S.; Yoon, K.; Hong, P.; Jeong, C.; Park, H.-S.; Kim, S.Y.; Lim, S.K. 42.2: World’s Largest (15-Inch) XGA AMLCD Panel Using IGZO Oxide TFT; SID Symposium Digest of Technical Papers; Wiley: Hoboken, NJ, USA, 2008; Volume 39, pp. 625–628. [Google Scholar]
- Jones, J.C. The Zenithal Bistable Display: From concept to consumer. J. Soc. Inf. Disp. 2008, 16, 143–154. [Google Scholar]
- Kyocera F-55471GNFJ Display Specifications; KYOCERA Display Corporation.
- AU Optronics General Display products Specifications. Available online: http://www.auo.com/?sn=149&lang=en-US&c=35 (accessed on 31 July 2015).
- Ampire Specifications for LCD Module AM-240320LFTZQW-00H. 2011.
- Kaohsiung Hitachi Electronics Co. Customer’s Acceptance Specification TX15D02VM0CAA. Available online: http://static1.1.sqspcdn.com/static/f/489821/16638760/1389725608473/TX15D02VM0CAA.pdf (accessed on 6 August 2015).
- Sharp Corporation Device Specification for CG-Silicon TFT-LCD Module LS037V7DD06. 2004.
- Nakajima, Y.; Teranishi, Y.; Kida, Y.; Maki, Y. 22.4: Invited Paper: Ultra-Low-Power LTPS TFT-LCD Technology Using a Multi-Bit Pixel Memory Circuit; SID Symposium Digest Technical Papers; Wiley: Hoboken, NJ, USA, 2006; Volume 37, pp. 1185–1188. [Google Scholar]
- Japan Display Inc. Japan Display Introduces Paper-like Color Reflective LCD. Available online: http://www.j-display.com/english/news/2012/20121025.html (accessed on 31 July 2015).
- Comiskey, B.; Albert, J.D.; Yoshizawa, H.; Jacobson, J. An electrophoretic ink for all-printed reflective electronic displays. Nature 1998, 394, 253–255. [Google Scholar]
- Hattori, R.; Masuda, Y.; Nihei, N.; Sakurai, R.; Yamada, S. Power consumption of a Quick-Response Liquid Powder Display (QR-LPD). IMID 2005, 5, 845–848. [Google Scholar]
- Sheridon, N.K. Some Uses of Microencapsulation for Electric Paper. U.S. Patent 5,604,027, 18 February 1997. [Google Scholar]
- Hayes, R.A.; Feenstra, B.J. Video-speed electronic paper based on electrowetting. Nature 2003, 425, 383–385. [Google Scholar] [PubMed]
- Miles, M.W. A new reflective FPD technology using interferometric modulation. J. Soc. Inf. Disp. 2012, 5, 379–382. [Google Scholar]
- Qualcomm Mirasol Display Technology Website. Available online: http://www.qualcomm.com/mirasol (accessed on 31 July 2015).
- Liang, R.; Chung, J.; Chen, D. Electrophoretic Display with in-Plane Switching. U.S. Patent 6,885,495 B2, 27 July 2005. [Google Scholar]
- Zhou, Z.-L.; Liu, Q.; Yeo, J.-S.; Combs, G.; Benson, B.; Parent, M.; Yang, J.; Mabeck, J.; Lam, S.; Jeon, Y. Development of Novel Electronic Inks for Print-Like Color Reflective Display; Hewlett-Packard Development Company: Palo Alto, CA, USA, 2011. [Google Scholar]
- Liu, B.B.Q.; Koch, T.R.; Mabeck, J.; Hoffman, R.L.; Mourey, D.A.; Combs, G.; Zhou, Z.-L.; Henze, D. 52.4L: Late-News Paper: Ultra-Low-Power Reflective Display with World’s Best Color; SID Symposium Digest Technical Papers; Wiley: Hoboken, NJ, USA, 2012; Volume 43, pp. 708–710. [Google Scholar]
- Yang, S.; Heikenfeld, J.; Kreit, E.; Hagedon, M.; Dean, K.; Zhou, K.; Smith, S.; Rudolph, J. Electrofluidic displays: Fundamental platforms and unique performance attributes. J. Soc. Inf. Disp. 2012, 19, 608–613. [Google Scholar]
- Shah, J.; Malcolm Brown, R. Towards electronic paper displays made from microbial cellulose. Appl. Microbiol. Biotechnol. 2005, 66, 352–355. [Google Scholar] [PubMed]
- Omodani, M. 10.1: Invited Paper: What is Electronic Paper? The Expectations. In SID Symposium Digest of Technical Papers; Wiley: Hoboken, NJ, USA, 2004; Volume 35, pp. 128–131. [Google Scholar]
- Gates, H.; Zehner, R.; Doshi, H.; Au, J. 31.2: A5 Sized Electronic Paper Display for Document Viewing; SID Symposium Digest of Technical Papers; E-Link: Cambridge, MA, USA, 2012; Volume 36, pp. 1214–1217. [Google Scholar]
- Hiji, N.; Machida, Y.; Yamamoto, Y.; Satoh, Y.; Ootani, S.; Satoh, T.; Shigemura, K. 8.4: Distinguished Paper: Novel Color Electrophoretic E-Paper Using Independently Movable Colored Particles; SID Symposium Digest Technical Papers; Wiley: Hoboken, NJ, USA, 2012; Volume 43, pp. 85–87. [Google Scholar]
- Jeon, S.-J.; Das, R.R.; Noh, C.; Jin, Y.W. Color tuning of electrochromic materials for Color e-Paper. In Proceedings of the Abstract 2348, 218th ECS Meeting, Lavages, NV, USA, 10–15 October 2010; p. 2348.
- Good Display GDE021A1 Specifications.
- E Ink Holdings Inc. Technical Specification ED060SCE. 2010. [Google Scholar]
- Kent Displays Inc. VGA Cholesteric Display Module with SPI Compatible interface Datasheet. 2006. [Google Scholar]
- Feenstra, B.J.; Hayes, R.A.; van Dijk, R.; Boom, R.G.H.; Wagemans, M.M.H.; Camps, I.G.; Giraldo, A.; Heijden, B.v.d. Electrowetting-Based Displays: Bringing Microfluidics Alive On-Screen; IEEE: New York, NY, USA, 2006; pp. 48–53. [Google Scholar]
- Hack, M.; Hewitt, R.; Brown, J.J.; Choi, J.W.; Cheon, J.H.; Kim, S.H.; Jang, J. P-11: Analysis of Low Power Consumption AMOLED Displays on Flexible Stainless Steel Substrates; SID Symposium Digest of Technical Papers; Wiley: Hoboken, NJ, USA, 2007; Volume 38, pp. 210–213. [Google Scholar]
- Wu, C.; Meng, Z.; Li, J.; Zhang, X.; Yang, G.; Xiong, S.; Shi, X.; Peng, H.; Wong, M.; Kwok, H.S. 35.4: A 2.1-Inch AMOLED Display Based on Metal-Induced Laterally Crystallized Polycrystalline Silicon Technology; SID Symposium Digest of Technical Papers; Wiley: Hoboken, NJ, USA, 2004; Volume 35, pp. 1128–1131. [Google Scholar]
- Steudel, S.; Myny, K.; Schols, S.; Vicca, P.; Smout, S.; Tripathi, A.; van der Putten, B.; van der Steen, J.-L.; van Neer, M.; Schütze, F. Design and realization of a flexible QQVGA AMOLED display with organic TFTs. Org. Electron. 2012, 13, 1729–1735. [Google Scholar]
- Zhu, F. OLED Activity and Technology Development. In Proceedings of the Symposium on Sustainability Driven Innovative Technologies, Hong Kong, China, 7–8 May 2009.
- Hack, M.G.; Chwang, A.B.; Lu, M.-H.M.; Kwong, R.C.; Weaver, M.S.; Tung, Y.-J.; Brown, J.J. Flexible low-power-consumption OLED displays for a universal communication device. SPIE 2003. [Google Scholar] [CrossRef]
- González, R.A.; Aguilar, P.C.M. Tecnología Oled Y Moled. Vis. Electrón. Algo Más Que Estado Sólido 2011, 4, 34–48. [Google Scholar]
- Borchardt, J.K. Developments in organic displays. Mater. Today 2004, 7, 42–46. [Google Scholar]
- OLED-Info. OLED Introduction and Basic OLED Information. Available online: http://www.oled-info.com/introduction (accessed on 31 July 2015).
- Sempel, A.; Büchel, M. Design aspects of low power polymer/OLED passive-matrix displays. Org. Electron. 2002, 3, 89–92. [Google Scholar] [CrossRef]
- Densitron. Approval Product Specification, C0201QILK-C. Available online: http://datasheet.eeworld.com.cn/pdf/285017,AZDISPLAYS,C0201QILK-C.pdf (accessed on 6 August 2015).
- U.S. Micro Products Inc. AMOLED USMP-A34480TP Product Specification. Available online: http://www.usmicroproducts.com/sites/default/files/datasheets/USMP-A34480TP_1.pdf (accessed on 6 August 2015).
- 4D Systems. MicroOLED-160-G2 Display Datasheet. Available online: http://www.4dsystems.com.au/product/1/3/4D_Intelligent_Display_Modules/uOLED_160_G2/ (accessed on 6 August 2015).
- RitDisplay Corp. Product Specification, RGS32256064WH002. Available online: http://www.gamma.spb.ru/download/P21301-X02.pdf (accessed on 6 August 2015).
- King, C.N. Electroluminescent Displays. Available online: http://ch00ftech.com/wp-content/uploads/2012/05/mrsnf98.pdf (accessed on 6 August 2015).
- Ran, F.; Yang, X.; Huan, X. Design of Thin Film Electroluminescent (TFEL) Display Panel Driver. Adv. Mater. Res. 2012, 462, 45–51. [Google Scholar] [CrossRef]
- Palalau, S.; Borzea, M.O.; Toffolo, D.; Roza, R.M. Transparent EL Display. U.S. Patent 6,115,008, 5 September 2000. [Google Scholar]
- Lumineq ELT256.120.90 Technical Data Sheet. Available online: http://lumineq.com/sites/default/files/product/fields/field_product_data_sheet/elt_256.120.90_2.pdf (accessed on 6 August 2015).
- Heikenfeld, J.C.; Steckl, A.J. Inorganic EL displays at the crossroads. Inf. Disp. 2003, 19, 20–25. [Google Scholar]
- Planar EL320.240.36-HB High-Bright Small Graphics Display 2009.
- Sharp LJ32H028 El Display Module Features.
- Chang, P.-L.; Wu, C.-C.; Leu, H.-J. Investigation of technological trends in flexible display fabrication through patent analysis. Displays 2012, 33, 68–73. [Google Scholar] [CrossRef]
- Kiyokawa, K. Occlusion Displays. In Handbook of Visual Display Technology; Chen, J., Cranton, W., Fihn, M., Eds.; Springer: Berlin, Germany, 2012; pp. 2251–2257. [Google Scholar]
- Choi, M.-C.; Kim, Y.; Ha, C.-S. Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci. 2008, 33, 581–630. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Wedding, C.A.; Strbik, O.M., III; Peters, E.F.; Guy, J.; Wedding, D.K. Overview of Flexible Plasma Display Technology. In Proceedings of the ASID ’06, New Delhi, India, 8–12 October 2006; pp. 323–337.
- Yoon, C.-D.K.; Hwang, Y.-K.; Chung, I.-J.; Mark, F.; Green, D.; Pangle, M.; McIntyre, J.; Smith, R.D. Recent Progress of Flexible AMOLED Displays. Proc. SPIE 2011. [Google Scholar] [CrossRef]
- E Ink Holdings Inc. Mobius, the First Large Format Flexible Display Technology to Go into Mass Production. Available online: http://www.eink.com/press_releases/e_ink_introduces_mobius_051313.html (accessed on 31 July 2015).
- Geng, J. A volumetric 3D display based on a DLP projection engine. Displays 2013, 34, 39–48. [Google Scholar] [CrossRef]
- Dodgson, N.A. Autostereoscopic 3D displays. Computer 2005, 38, 31–36. [Google Scholar] [CrossRef]
- Dodgson, N.A. Optical devices: 3D without the glasses. Nature 2013, 495, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Vallerio, K.S.; Zhong, L.; Jha, N.K. Energy-efficient graphical user interface design. Mob. Comput. IEEE Trans. 2006, 5, 846–859. [Google Scholar] [CrossRef]
- Flinn, J.; Satyanarayanan, M. Energy-aware adaptation for mobile applications. SIGOPS Oper. Syst. Rev. 1999, 33, 48–63. [Google Scholar] [CrossRef]
- Rabaey, J.M.; Pedram, M. Low Power Design Methodologies; Springer US: Boston, MA, USA, 1996. [Google Scholar]
- Anggorosesar, A.; Rim, K.-W.; Kim, Y.-J. A Survey of Low-power Techniques for Liquid Crystal Display Systems with Light Emitting Diode Backlight Units. IETE Tech. Rev. 2011, 28, 351. [Google Scholar] [CrossRef]
- Cheng, W.-C.; Chao, C.-F. Minimization for LED-backlit TFT-LCDs. In Proceedings of the 43rd Annual Design Automation Conference ACM, New York, NY, USA, 24–28 July 2006; pp. 608–611.
- Choi, L.; Shim, H.; Chang, N. Low-Power Color TFT LCD Display for Hand-Held Embedded Systems. In Proceedings of the International Symposium on Low Power Electronics and Design, Monterey, CA, USA, 12–14 August 2002; pp. 112–117.
- Shim, H.; Chang, N.; Pedram, M. A Compressed Frame Buffer to Reduce Display Power Consumption in Mobile Systems. In Proceedings of the ASP-DAC 2004. Asia and South Pacific Design Automation Conference, Yokohama, Japan, 27–30 January 2004; pp. 819–824.
- Cheng, W.-C.; Hou, Y.; Pedram, M. Power Minimization in a Backlit TFT-LCD Display by Concurrent Brightness and Contrast Scaling; IEEE Computer Society: Washington, DC, USA, 2004; p. 10252. [Google Scholar]
- Dong, M.; Choi, Y.-S.K.; Zhong, L. Power Modeling of Graphical User Interfaces on OLED Displays. In Proceedings of the 46th Annual Design Automation Conference, DAC ’09, New York, NY, USA, 26–31 July 2009; pp. 652–657.
- Zhao, M.; Zhang, H.; Chen, X.; Chen, Y.; Xue, C.J. Online OLED Dynamic Voltage Scaling for Video Streaming Applications on Mobile Devices. In Proceedings of the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Montreal, QC, Canada, 29 September–4 October 2013; p. 9.
- Lee, C.; Monga, V. Power-Constrained RGB-to-RGBW Conversion for Emissive Displays. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 1205–1209.
- Kansal, A.; Hsu, J.; Zahedi, S.; Srivastava, M.B. Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. TECS 2007, 6, 651–656. [Google Scholar] [CrossRef]
- GBI Research. Energy Efficient Displays Technologies to 2020—OLED Displays Set to Propel Growth of the Industry; GBI Research: London, UK, 2010. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, M.R.; Casanova, E.Z.; Alonso, I.G. Review of Display Technologies Focusing on Power Consumption. Sustainability 2015, 7, 10854-10875. https://doi.org/10.3390/su70810854
Fernández MR, Casanova EZ, Alonso IG. Review of Display Technologies Focusing on Power Consumption. Sustainability. 2015; 7(8):10854-10875. https://doi.org/10.3390/su70810854
Chicago/Turabian StyleFernández, María Rodríguez, Eduardo Zalama Casanova, and Ignacio González Alonso. 2015. "Review of Display Technologies Focusing on Power Consumption" Sustainability 7, no. 8: 10854-10875. https://doi.org/10.3390/su70810854
APA StyleFernández, M. R., Casanova, E. Z., & Alonso, I. G. (2015). Review of Display Technologies Focusing on Power Consumption. Sustainability, 7(8), 10854-10875. https://doi.org/10.3390/su70810854