Role of Integrated Approaches in Water Resources Management: Antofagasta Region, Chile
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Significant Maps Creations
2.2.1. Elevation
2.2.2. Slope
2.2.3. Hillshade
2.2.4. Aspect
2.2.5. River Basin
2.2.6. Drainage Systems
2.2.7. Geology
2.3. Pollution Level Risk Identification
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
In Memoriam
References
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Climate Dynamics 2020, 54, 4309–4330. [Google Scholar] [CrossRef]
- ReporteMinero. 2018. Available online: https://www.reporteminero.cl/noticia/noticias/2018/04/sector-minero-aporta-el-10-del-pib-nacional (accessed on 14 December 2020).
- Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E. Water scarcity and the impact of the mining and agricultural sectors in Chile. Sustainability 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Babidge, S. Contested value and an ethics of resources: Water, mining and indigenous people in the Atacama Desert, Chile. Aust. J. Anthropol. 2016, 27, 84–103. [Google Scholar] [CrossRef]
- COCHILCO. Proyeccion de Consumo de Agua en la Mineria del Cobre 2014–2025; Comision Chilena del Cobre: Santiago de Chile, Chile, 2014. Available online: http://www.cochilco.cl/descargas/estudios/informes/agua/2015_Informe_Proyeccion_consumo_de_agua_vf.pdf (accessed on 15 January 2015). (In Spanish)
- Molinos-Senante, M.; Donoso, G. Water scarcity and affordability in urban water pricing: A case study of Chile. Util. Policy 2016, 43, 107–116. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Pizarro, R.; García-Chevesich, P.; Valdés, J.B.; Olivares, C.; Vera, M.; Abarza, A. Water governance in Chile: Availability, management and climate change. J. Hydrol. 2014, 519, 2538–2567. [Google Scholar] [CrossRef]
- Pandey, A.; Dabral, P.P.; Chowdary, V.M.; Yadav, N.K. Landslide hazard zonation using remote sensing and GIS: A case study of Dikrong river basin, Arunachal Pradesh, India. Environ. Geol. 2008, 54, 1517–1529. [Google Scholar] [CrossRef]
- Avtar, R.; Sahu, N.; Aggarwal, A.K.; Chakraborty, S.; Kharrazi, A.; Yunus, A.P.; Kurniawan, T.A. Exploring renewable energy resources using remote sensing and GIS—A review. Resources 2019, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Hadjimitsis, D.; Agapiou, A.; Alexakis, D.; Sarris, A. Exploring natural and anthropogenic risk for cultural heritage in Cyprus using remote sensing and GIS. Int. J. Digital Earth 2013, 6, 115–142. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V.; Alexakis, D.D.; Themistocleous, K.; Cuca, B.; Argyriou, A.; Hadjimitsis, D.G. Cultural heritage management and monitoring using remote sensing data and GIS: The case study of Paphos area, Cyprus. Comput. Environ. Urban Syst. 2015, 54, 230–239. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F. The use of remote sensing and GIS in the sustainable management of tropical coastal ecosystems. Environ. Dev. Sustain. 2002, 4, 93–112. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, A. Digital Elevation Model (DEM) in GIS, Report No. 3.; University of Mysore: Mysore, India, 2017. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Gnanasundar, D.; Arumugam, R. Identifying groundwater recharge zones using remote sensing & GIS techniques in Amaravathi aquifer system, Tamil Nadu, South India. Sustain. Environ. Res. 2019, 29, 15. [Google Scholar]
- Usali, N.; Ismail, M.H. Use of remote sensing and GIS in monitoring water quality. J. Sustain. Dev. 2010, 3, 228. [Google Scholar] [CrossRef]
- Brivio, P.A.; Colombo, R.; Maggi, M.; Tomasoni, R. Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int. J. Remote. Sens. 2002, 23, 429–441. [Google Scholar] [CrossRef]
- Barnali, D.; Venkatesh, U. GIS and Geocomputation for Water Resource Science and Engineering; Wiley American Geophysical Union: Hoboken, NJ, USA, 2015; p. 568. ISBN 978-1-118-82618-8. [Google Scholar]
- Chowdary, V.M.; Ramakrishnan, D.; Srivastava, Y.K.; Chandran, V.; Jeyaram, A. Integrated water resource development plan for sustainable management of Mayurakshi watershed, India using remote sensing and GIS. Water Resour. Manag. 2009, 23, 1581–1602. [Google Scholar] [CrossRef]
- Romero, L.; Alonso, H.; Campano, P.; Fanfani, L.; Cidu, R.; Dadea, C.; Farago, M. Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Appl. Geochem. 2003, 18, 1399–1416. [Google Scholar] [CrossRef]
- Godfrey, L.V.; Herrera, C.; Gamboa, C.; Mathur, R. Chemical and isotopic evolution of groundwater through the active Andean arc of Northern Chile. Chem. Geol. 2019, 518, 32–44. [Google Scholar] [CrossRef]
- Bhuiyan, C. Hydrogeological factors: Their association and relationship with seasonal water table fluctuation in the composite hardrock Aravalli terrain, India. Environ. Earth Sci. 2010, 60, 733–748. [Google Scholar] [CrossRef]
- Chandra, S.; Singh, P.K.; Tiwari, A.K.; Panigrahy, B.; Kumar, A. valuation of hydrogeological factor and their relationship with seasonal water table fluctuation in Dhanbad district, Jharkhand, India. ISH J. Hyd. Eng. 2015, 21, 193–206. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Nota, N.; Marchionatti, F.; De Maio, M. Groundwater-level risk assessment by using statistical and geographic information system (GIS) techniques: A case study in the Aosta Valley region, Italy. Geomat. Nat. Haz. Risk. 2017, 8, 1396–1406. [Google Scholar] [CrossRef]
- Misra, A.; Kumar, A.; Bhambri, R.; Haritashya, U.K.; Verma, A.; Dobhal, D.P.; Upadhyay, R. Topographic and climatic influence on seasonal snow cover: Implications for the hydrology of ungauged Himalayan basins. India J. Hydrol. 2020, 24, 124716. [Google Scholar] [CrossRef]
- Murthy, K.S.R. Ground water potential in a semi-arid region of Andhra Pradesh-a geographical information system approach. Int. J. Remote Sens. 2000, 21, 1867–1884. [Google Scholar] [CrossRef]
- Kumar, A.; Krishna, A.P. Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto. Int. 2018, 33, 105–129. [Google Scholar] [CrossRef]
- Patil, S.G.; Mohite, N.M. Identification of groundwater recharge potential zones for a watershed using remote sensing and GIS. Int. J. Geomat. Geosci. 2014, 4, 485–498. [Google Scholar]
- Tiwari, A.K.; Lavy, M.; Amanzio, G.; de Maio, M.; Singh, P.K.; Mahato, M.K. Identification of artificial groundwater recharging zone using a GIS-based fuzzy logic approach: A case study in a coal mine area of the Damodar Valley, India. Appl. Water Sci. 2017, 7, 4513–4524. [Google Scholar] [CrossRef]
- Verbovšek, T.; Popit, T.; Kokalj, Ž. VAT Method for Visualization of Mass Movement Features: An Alternative to Hillshaded DEM. Remote Sens. 2019, 11, 2946. [Google Scholar] [CrossRef]
- Oh, H.J.; Kim, Y.S.; Choi, J.K.; Park, E.; Lee, S. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J. Hydrol. 2011, 399, 158–172. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Poesen, J.; Verstraeten, G.; Vanacker, V.; Moeyersons, J.; Nyssen, J.; Van Beek, L.P.H. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 2005, 67, 351–363. [Google Scholar] [CrossRef]
- Fagbohun, B.J. Integrating GIS and multi-influencing factor technique for delineation of potential groundwater recharge zones in parts of Ilesha schist belt, southwestern Nigeria. Environ. Earth Sci. 2018, 77, 69. [Google Scholar] [CrossRef]
- Johnson, L.E. Geographic Information Systems in Water Resources Engineering; CRC Press: New York, NY, USA, 2016. [Google Scholar]
- Singh, S.K.; Zeddies, M.; Shankar, U.; Griffiths, G.A. Potential groundwater recharge zones within New Zealand. Geosci. Front. 2019, 10, 1065–1072. [Google Scholar] [CrossRef]
- Rocha, P.C.; Santos, A.A. Hydrological analysis in water basins. Mercator Fortaleza 2018, 17, e17025. [Google Scholar] [CrossRef]
- Zernitz, E.R. Drainage patterns and their significance. J. Geol. 1932, 40, 498–521. [Google Scholar] [CrossRef]
- Houston, J. Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: Mechanisms, magnitudes and causes. Hydrol. Process. 2002, 16, 3019–3035. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Singh, P.K.; Chandra, S.; Ghosh, A. Assessment of groundwater level fluctuation by using remote sensing and GIS in West Bokaro coalfield, Jharkhand, India. ISH J. Hyd. Eng. 2016, 22, 59–67. [Google Scholar] [CrossRef]
- Chowdhury, A.; Jha, M.K.; Chowdary, V.M. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ. Earth Sci. 2010, 59, 1209. [Google Scholar] [CrossRef]
- Chambel, A. The role of groundwater in the management of water resources in the World. Proc. Int. Assoc. Hydrol. Sci. 2015, 366, 107. [Google Scholar] [CrossRef]
- Aller, L.; Bennett, T.; Lehr, J.; Petty, R.; Hackett, G. DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeological Setting EPA/600/2-87/035 Robert S Kerr Environmental Research Laboratory; USEPA: Ada, OK, USA, 1987. [Google Scholar]
- Civita, M.; De Maio, M. Assessing and mapping groundwater vulnerability to contamination: The Italian combined approach. Geofísica Int. 2004, 43, 513–532. [Google Scholar] [CrossRef] [Green Version]
- Foster, S. Fundamental Concepts in Aquifer Vulnerability, Pollution Risk and Protection Strategy. In Proceedings of the Vulnerability of Soil and Groundwater to Pollutants International Conference, Noordwijk Aan Zee, The Netherlands, 30 March 1987; Netherlands Organization for Applied Scientific Research: The Hague, The Netherlands, 1987. [Google Scholar]
- Civita, M. L’infiltrazione potenziale media annua nel massiccio del Matese (Italia meridionale). Conv. Intern. Acque Sotterranee Palermo 1973, 2, 129–142. [Google Scholar]
- Civita, M.; de Maio, M. SINTACS: Un Sistema Parametrico per la Valutazione e la Cartografia Della Vulnerabilità Degli Acquiferi All’inquinamento; Pythagoras: Bologna, Italy, 1997. [Google Scholar]
- Manfreda, S.; Sdao, F.; Sole, A. Hydrogeological Water Balance in Carbonate Hydro-Structure. In Proceedings of the 2nd IASWE/WSEAS International Conference on WaterResources, Hydraulics & Hydrology (WHH 2007), Portoroz, Slovenia, 15–17 May 2007; WSEAS: Cambridge, UK; pp. 216–222. [Google Scholar]
- Canora, F.; Musto, M.A.; Sdao, F. Groundwater Recharge Assessment in the Carbonate Aquifer System of the LauriaMounts (Southern Italy) by GIS-Based Distributed Hydrogeological Balance Method. In Computational Science and Its Applications–ICCSA 2018, Lecture Notes in Computer Science; Gervasi, O., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Borzì, I.; Bonaccorso, B.; Aronica, G.T. The Role of DEM Resolution and Evapotranspiration Assessment in Modeling Groundwater Resources Estimation: A Case Study in Sicily. Water 2020, 12, 2980. [Google Scholar] [CrossRef]
- Civita, M. Idrogeologia Applicata e Ambientale; CEA Editore: Roma, Italy, 2005; ISBN 978-8808087416. [Google Scholar]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
Parameter | Area (km2) | Percentage (%) |
---|---|---|
Elevation (masl) | ||
<500 | 2973 | 2.4 |
501–1500 | 27,948 | 22.1 |
1501–3000 | 50,888 | 40.3 |
3001–4500 | 36,346 | 28.8 |
>4500 | 8099 | 6.4 |
Slope (degree) | ||
<5 | 63,007 | 50.0 |
5.1–10 | 32,294 | 25.6 |
10.1–15 | 14,028 | 11.1 |
15.1–20 | 7566 | 6.0 |
>20 | 9358 | 7.4 |
Aspect (degree) | ||
Flat | 15,085 | 12 |
North | 7383 | 5.8 |
Northeast | 11,652 | 9.2 |
East | 10,233 | 8.1 |
Southeast | 10,657 | 8.4 |
South | 13,350 | 10.6 |
Southwest | 16,970 | 13.4 |
West | 17,831 | 14.1 |
Northwest | 16,278 | 13 |
North | 6814 | 5.4 |
River Basin | ||
Loa River | 27,148 | 21.5 |
Frontier Michincha Salt Field-Loa River | 2676 | 2.1 |
Coastal Loa River-Caracoles Ravine | 8367 | 6.6 |
Atacama Salt Field | 15,572 | 12.4 |
Caracoles Ravine | 18,293 | 14.5 |
Frontier Atacama and Socompa Salt Fields | 4052 | 3.2 |
Endorreic between Frontier y Atacama Salt Field | 5311 | 4.2 |
Endorreic Atacama Salt Field-Pacifico Stream | 14,439 | 11.5 |
La Negra Ravine | 11,342 | 9.0 |
Coastal between La Negra and Pan de Azucar Ravines | 16,853 | 13.4 |
Coastal Pan de Azucar Ravine and Salado River | 1949 | 1.5 |
Drainage Density (Km/Km2) | ||
0–0.14 | 40,773 | 32.3 |
0.15–0.26 | 40,115 | 31.8 |
0.27–0.41 | 27,637 | 21.9 |
0.42–0.61 | 12,849 | 10.2 |
0.62–1.1 | 4879 | 3.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, A.K.; Suozzi, E.; Silva, C.; De Maio, M.; Zanetti, M. Role of Integrated Approaches in Water Resources Management: Antofagasta Region, Chile. Sustainability 2021, 13, 1297. https://doi.org/10.3390/su13031297
Tiwari AK, Suozzi E, Silva C, De Maio M, Zanetti M. Role of Integrated Approaches in Water Resources Management: Antofagasta Region, Chile. Sustainability. 2021; 13(3):1297. https://doi.org/10.3390/su13031297
Chicago/Turabian StyleTiwari, Ashwani Kumar, Enrico Suozzi, Carlos Silva, Marina De Maio, and Mariachiara Zanetti. 2021. "Role of Integrated Approaches in Water Resources Management: Antofagasta Region, Chile" Sustainability 13, no. 3: 1297. https://doi.org/10.3390/su13031297