Monitoring System for Tracking a PV Generator in an Experimental Smart Microgrid: An Open-Source Solution
Abstract
:1. Introduction
1.1. State-of-the-Art
1.2. Contribution of the Work
- A solution fully based on open-source technologies to implement a PV monitoring system is presented. The proposal integrates existent open-source technologies, overcoming the drawbacks of previous works and, additionally, the RPi is responsible forfor hosting the database and the visualization web platform. The latter is a novelty in scientific literature;
- The computational resources of the RPi are also monitored, and experimental results for the operation of the whole SMG are reported. The suitability of the RPi and, consequently, of the monitoring system, is proven for long-term continuous operation;
- The proposal is deployed on a layered hierarchical framework with flexibility and scalability features. Real-time data exchange and online visualization through a user-friendly interface are effectively achieved;
- The monitoring system is entirely functional, with a low-cost nature, and there are no dependencies on software licenses or on external web servers. Further improvements are based on updates to the open-source software and hardware components;
- Successful experimental results are reported together with technological details and requirements in order to make the involved technologies more applicative, contributing to the next step of implementation.
2. Materials and Methods
2.1. SMG Description
2.2. Hardware and Software Components
3. Proposed Monitoring System
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating current |
CPU | Central processing unit |
DC | Direct current |
DR | Digital replica |
EL | Electrolyser |
FC | Fuel cell |
GPIO | General purpose input/output |
GUI | Graphical user interface |
HTML | HyperText Markup Language |
I2C | Inter-integrated circuit |
I/O | Input/output |
IDE | Integrated development environment |
IoT | Internet of Things |
IT | Information technology |
LAN | Local area network |
OS | Operating system |
PC | Personal computer |
PCB | Printed circuit board |
PLC | Programmable logic controller |
PV | Photovoltaic |
R&D | Research and development |
RAM | Random-access memory |
RPi | Raspberry Pi |
SG | Smart grid |
SMG | Smart microgrid |
SoC | State of charge |
SPI | Serial peripheral interface |
SQL | Search Query Language |
TCP/IP | Transmission control protocol/Internet protocol |
USB | Universal serial bus |
WAN | Wide area network |
References
- Kilic, N.; Gungor, V.C. Analysis of low power wireless links in smart grid environments. Comput. Netw. 2013, 57, 1192–1203. [Google Scholar] [CrossRef]
- Zubieta, L.E. Are microgrids the future of energy? DC microgrids from concept to demonstration to deployment. IEEE Electrif. Mag. 2016, 4, 37–44. [Google Scholar] [CrossRef]
- Koohi-Kamali, S.; Rahim, N.A. Coordinated control of smart microgrid during and after islanding operation to prevent under frequency load shedding using energy storage system. Energy Convers. Manag. 2016, 127, 623–646. [Google Scholar] [CrossRef]
- Lidula, N.W.A.; Rajapakse, A.D. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186–202. [Google Scholar] [CrossRef]
- Yue, C.-D.; Liu, C.-C.; Tu, C.-C.; Lin, T.-H. Prediction of Power Generation by Offshore Wind Farms Using Multiple Data Sources. Energies 2019, 12, 700. [Google Scholar] [CrossRef] [Green Version]
- Alsaidan, I.; Alanazi, A.; Gao, W.; Wu, H.; Khodaei, A. State-Of-The-Art in Microgrid-Integrated Distributed Energy Storage Sizing. Energies 2017, 10, 1421. [Google Scholar] [CrossRef] [Green Version]
- Arkhangelski, J.; Roncero-Sánchez, P.; Abdou-Tankari, M.; Vázquez, J.; Lefebvre, G. Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case. Energies 2019, 12, 2776. [Google Scholar] [CrossRef] [Green Version]
- Kharel, S.; Shabani, B. Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables. Energies 2018, 11, 2825. [Google Scholar] [CrossRef] [Green Version]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Maggio, G.; Nicita, A.; Squadrito, G. How the hydrogen production from RES could change energy and fuel markets: A review of recent literature. Int. J. Hydrogen Energy 2019, 44, 11371–11384. [Google Scholar] [CrossRef]
- Calderón, A.J.; González, I.; Portalo, J.M.; Calderón, M. Contributing to sustainable deployment of renewable energies-based Smart Micro-Grid through the integration of Open-Source Technology. In Proceedings of the 8 International Congress of Energy and Environment Engineering and Management (8ICEEEM), Porto, Portugal, 2–4 September 2019. [Google Scholar]
- González, I.; Calderón, A.J.; Andújar, J.M. Novel Remote Monitoring Platform for RES-Hydrogen based Smart Microgrid. Energy Convers. Manag. 2017, 148, 489–505. [Google Scholar] [CrossRef]
- Sánchez-Hidalgo, M.A.; Cano, M.D. A survey on visual data representation for smart grids control and monitoring. Sustain. Energy Grids Netw. 2018, 16, 351–369. [Google Scholar] [CrossRef]
- Ferreira, A.; Ferreira, A.; Cardin, O.; Leitão, P. Extension of holonic paradigm to smart grids. IFAC-PapersOnLine 2015, 48, 1099–1104. [Google Scholar] [CrossRef]
- Vargas-Salgado, C.; Aguila-Leon, J.; Chiñas-Palacios, C.; Hurtado-Pérez, E. Low-cost web-based Supervisory Control and Data Acquisition system for a microgrid testbed: A case study in design and implementation for academic and research applications. Heliyon 2019, 5, e02474. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Parra, J.M.; Mateo-Aroca, A.; Silvente-Niñirola, G.; Bueso, M.C.; Molina-García, Á. PV Module Monitoring System Based on Low-Cost Solutions: Wireless Raspberry Application and Assessment. Energies 2018, 11, 3051. [Google Scholar] [CrossRef] [Green Version]
- González, I.; Calderón, A.J.; Calderón, M.; González, J.F. Survey about the Utilization of Open Source Arduino for Control and Measurement Systems in Advanced Scenarios. Application to Smart Micro-Grid and its Digital Replica. In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics, Prague, Czech Republic, 29–31 July 2019. [Google Scholar]
- Pereira, R.I.S.; Dupont, I.M.; Carvalho, P.C.M.; Jucá, S.C.S. IoT embedded linux system based on Raspberry Pi applied to real-time cloud monitoring of a decentralized photovoltaic plant. Measurement 2018, 114, 286–297. [Google Scholar] [CrossRef]
- Fisher, R.; Ledwaba, L.; Hancke, G.; Kruger, C. Open Hardware: A Role to Play in Wireless Sensor Networks? Sensors 2015, 15, 6818–6844. [Google Scholar] [CrossRef] [Green Version]
- Syafrudin, M.; Fitriyani, N.L.; Li, D.; Alfian, G.; Rhee, J.; Kang, Y.-S. An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability. Sustainability 2017, 9, 2139. [Google Scholar] [CrossRef] [Green Version]
- Chacon, J.; Saenz, J.; Torre, L.; Diaz, J.M.; Esquembre, F. Design of a Low-Cost Air Levitation System for Teaching Control Engineering. Sensors 2017, 17, 2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, D.G.; Duran-Faundez, C. Open-Source Electronics Platforms as Enabling Technologies for Smart Cities: Recent Developments and Perspectives. Electronics 2018, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Martinez, B.; Vilajosana, X.; Kim, I.H.; Zhou, J.; Tuset-Peiró, P.; Xhafa, A.; Poissonnier, D.; Lu, X. I3Mote: An Open Development Platform for the Intelligent Industrial Internet. Sensors 2017, 17, 986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.-T.-Q.; Debusschere, V.; Bobineau, C.; Giap, Q.; Hadjsaid, N. Smartlog –A declarative language for distributed programming in smart grids. Comput. Electr. Eng. 2019, 80, 106499. [Google Scholar] [CrossRef]
- FIWARE Platform Homepage. Available online: https://www.fiware.org/ (accessed on 15 May 2021).
- Arduino Homepage. Available online: www.arduino.cc (accessed on 30 May 2021).
- Raspberry Pi Homepage. Available online: http://www.raspberrypi.org (accessed on 15 May 2021).
- Calderón, A.J.; González, I.; Calderón, M.; Segura, F.; Andújar, J.M. A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells. Sensors 2016, 16, 349. [Google Scholar] [CrossRef] [Green Version]
- González, I.; Calderón, A.J. Integration of open source hardware Arduino platform in automation systems applied to Smart Grids/Micro-Grids. Sustain. Energy Technol. Assess. 2019, 36, 100557. [Google Scholar] [CrossRef]
- Fuentes, M.; Vivar, M.; Burgos, J.M.; Aguilera, J.; Vacas, J.A. Design of an accurate, low-cost autonomous data logger for PV system monitoring using Arduino™ that complies with IEC standards. Sol. Energy Mater. Sol. Cells 2014, 130, 529–543. [Google Scholar] [CrossRef]
- Mejías, A.; Herrera, R.S.; Márquez, M.A.; Calderón, A.J.; González, I.; Andújar, J.M. Easy Handling of Sensors and Actuators over TCP/IP Networks by Open Source Hardware/Software. Sensors 2017, 17, 94. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.P.; Ferreira, J.C.; Monteiro, V.; Afonso, J.A.; Afonso, J.L. IoT and Blockchain Paradigms for EV Charging System. Energies 2019, 12, 2987. [Google Scholar] [CrossRef] [Green Version]
- OpenEnergyMonitor Homepage. Available online: https://openenergymonitor.org/ (accessed on 20 May 2021).
- Grafana Homepage. Available online: https://grafana.com/ (accessed on 2 May 2021).
- Voicu, V.; Petreus, D.; Etz, R. Data Acquisition System for Solar Panels. In Proceedings of the 42nd International Spring Seminar on Electronics Technology (ISSE), Wroclaw, Poland, 15–19 May 2019. [Google Scholar] [CrossRef]
- Ali, A.S.; Coté, C.; Heidarinejad, M.; Stephens, B. Elemental: An Open-Source Wireless Hardware and Software Platform for Building Energy and Indoor Environmental Monitoring and Control. Sensors 2019, 19, 4017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalan, L.; Araiz, M.; Aranguren, P.; Padilla, G.D.; Hernandez, P.A.; Perez, N.M.; Garcia de la Noceda, C.; Albert, J.F.; Astrain, D. Prospects of Autonomous Volcanic Monitoring Stations: Experimental Investigation on Thermoelectric Generation from Fumaroles. Sensors 2020, 20, 3547. [Google Scholar] [CrossRef]
- Gimeno-Sales, F.J.; Orts-Grau, S.; Escribá-Aparisi, A.; González-Altozano, P.; Balbastre-Peralta, I.; Martínez-Márquez, C.I.; Gasque, M.; Seguí-Chilet, S. PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies. Sustainability 2020, 12, 10651. [Google Scholar] [CrossRef]
- Howlader, A.M.; Matayoshi, H.; Sepasi, S.; Senjyu, T. Design and Line Fault Protection Scheme of a DC Microgrid Based on Battery Energy Storage System. Energies 2018, 11, 1823. [Google Scholar] [CrossRef] [Green Version]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Sensor DS18B20 Product Information. Available online: https://www.maximintegrated.com/en/products/sensors/DS18B20.html (accessed on 2 October 2019).
- Carrasco, M.; Laudani, A.; Lozito, G.M.; Mancilla-David, F.; Riganti Fulginei, F.; Salvini, A. Low-Cost Solar Irradiance Sensing for PV Systems. Energies 2017, 10, 998. [Google Scholar] [CrossRef]
- Cabezas, J.; Sánchez-Rodríguez, T.; Gómez-Galán, J.A.; Cifuentes, H.; González Carvajal, R. Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing. Sensors 2018, 18, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Cheng, Z.; Jia, P.; Zhang, B.; Liu, X.; Hu, R. Impact of Thermal Control Measures on the Imaging Quality of an Aerial Optoelectronic Sensor. Sensors 2019, 19, 2753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebaudo, F.; Benoist, R. Low-cost automatic temperature monitoring system with alerts for laboratory rearing units. MethodsX 2019, 6, 2127–2133. [Google Scholar] [CrossRef] [PubMed]
- Melo, G.C.G.d.; Torres, I.C.; Araújo, Í.B.Q.d.; Brito, D.B.; Barboza, E.d.A. A Low-Cost IoT System for Real-Time Monitoring of Climatic Variables and Photovoltaic Generation for Smart Grid Application. Sensors 2021, 21, 3293. [Google Scholar] [CrossRef] [PubMed]
- Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The Future of Industrial Communication. Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [Google Scholar] [CrossRef]
- González, I.; Calderón, A.J.; Portalo, J.M. Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid. Sustainability 2021, 13, 2234. [Google Scholar] [CrossRef]
- Grafana Dashboard for Monitoring System Metrics Based on Telegraf. Available online: https://grafana.com/grafana/dashboards/928 (accessed on 2 June 2021).
- Corral-García, J.; González-Sánchez, J.-L.; Pérez-Toledano, M.-Á. Evaluation of Strategies for the Development of Efficient Code for Raspberry Pi Devices. Sensors 2018, 18, 4066. [Google Scholar] [CrossRef] [Green Version]
- Aghenta, L.O.; Iqbal, M.T. Low-Cost, Open Source IoT-Based SCADA System Design Using Thinger.IO and ESP32 Thing. Electronics 2019, 8, 822. [Google Scholar] [CrossRef] [Green Version]
- Baxter, I.; Gyuk, R.; Byrne, H.; Chalamala, B.R. Engineering energy-storage projects: Applications and financial aspects (viewpoint). IEEE Electrif. Mag. 2018, 6, 4–12. [Google Scholar] [CrossRef]
Work | Data Acquisition | Data Storage (Server/Database) | Communication | Visualization Software | Sensors |
---|---|---|---|---|---|
15 | Arduino | Plesk/CloudDB | Radio | Web SCADA (HTML5) | Temperature, voltage, current, relative humidity, anemometer, irradiance |
16 | Arduino | Unspecified | Radio | EmonCMS | Temperature, voltage, current, relative humidity, irradiance |
18 | SanUSB | External server/MySQL | Serial | Web Monitor (PHP) | Temperature, voltage, current, irradiance, relative humidity |
28 | Arduino | PC/LabVIEW data base | Serial | LabVIEW | Voltage |
29 | Arduino | PC/LabVIEW data base | Ethernet | LabVIEW | Temperature |
30 | Arduino | Arduino/SD card | Not applicable | Not applicable | Temperature, voltage, current, irradiance, |
35 | RPi | Docker/InfluxDB | Not applicable | Grafana | Pyranometer |
36 | Custom PCB | Docker/InfluxDB | Radio | Grafana | Temperature, relative humidity, irradiance, CO2, pressure, etc. |
37 | Arduino | RPi/InfluxDB | RS485 | Grafana | Humidity, temperature, soil moisture |
38 | UWP 3.0 | Server/InfluxDB | Modbus | Grafana | Temperature, voltage, current, irradiance |
Present work | Arduino | RPi/MariaDB | Ethernet | Grafana | Temperature |
Element | QTY | Cost (EUR) |
---|---|---|
Grafana | 1 | Free |
Arduino MEGA | 1 | <20 |
IDE | 1 | Free |
Raspberry Pi | 1 | <40 |
LAMP | 1 | Free |
DS18B20 sensors | 12 | <6 |
SD card | 1 | <6 |
Flash drive | 1 | <8 |
Ethernet Switch | 1 | <50 |
Ancillary devices (wires, resistors, etc.) | 1 | <30 |
Total: | <150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portalo, J.M.; González, I.; Calderón, A.J. Monitoring System for Tracking a PV Generator in an Experimental Smart Microgrid: An Open-Source Solution. Sustainability 2021, 13, 8182. https://doi.org/10.3390/su13158182
Portalo JM, González I, Calderón AJ. Monitoring System for Tracking a PV Generator in an Experimental Smart Microgrid: An Open-Source Solution. Sustainability. 2021; 13(15):8182. https://doi.org/10.3390/su13158182
Chicago/Turabian StylePortalo, José María, Isaías González, and Antonio José Calderón. 2021. "Monitoring System for Tracking a PV Generator in an Experimental Smart Microgrid: An Open-Source Solution" Sustainability 13, no. 15: 8182. https://doi.org/10.3390/su13158182