Energy-Saving Potential of Applying Prefabricated Straw Bale Construction (PSBC) in Domestic Buildings in Northern China
Abstract
:1. Introduction
1.1. Research Background
1.2. Climatic Features and Energy Consumptions of Buildings in Northern China
1.3. Rationale for Straw Bale Construction in Northern China
1.4. Prefabricated Straw Bale Construction (PSBC)
1.5. Research Scope and Objective
2. Research Methodology
2.1. Typical Residential Buildings
2.2. Application of PSBC
2.3. IESVE Simulation Process
3. Research Results and Discussions
3.1. Heating Load
3.2. Heating and Cooling Energy Requirements
4. Discussion on Applicability of PSBC
4.1. Environmental Impact of PSBC
4.2. Hygrothermal Environment and Durability
4.3. Material Availability
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lin, B.; Liu, X. China’s carbon dioxide emissions under the urbanization process: Influence factors and abatement policies. Econ. Res. J. 2010, 2010, 66–78. [Google Scholar]
- Chen, S.; Li, N.; Guan, J.; Xie, Y.; Sun, F.; Ni, J. A statistical method to investigate national energy consumption in the residential building sector of China. Energy Build. 2008, 40, 654–665. [Google Scholar] [CrossRef]
- Hu, S.; Yan, D.; Guo, S.; Cui, Y.; Dong, B. A survey on energy consumption and energy usage behavior of households and residential building in urban China. Energy Build. 2017, 148, 366–378. [Google Scholar] [CrossRef]
- Yuan, T.; Zhu, N.; Shi, Y.; Chang, C.; Yang, K.; Ding, Y. Sample data selection method for improving the prediction accuracy of the heating energy consumption. Energy Build. 2018, 158, 234–243. [Google Scholar] [CrossRef]
- Diao, L.; Sun, Y.; Chen, Z.; Chen, J. Modeling energy consumption in residential buildings: A bottom-up analysis based on occupant behavior pattern clustering and stochastic simulation. Energy Build. 2017, 147, 47–66. [Google Scholar] [CrossRef]
- Yao, R.; Li, B.; Steemers, K. Energy policy and standard for built environment in China. Renew. Energy 2005, 30, 1973–1988. [Google Scholar] [CrossRef]
- Han, K.K.; Golparvar-Fard, M. Potential of big visual data and building information modeling for construction performance analytics: An exploratory study. Autom. Constr. 2017, 73, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.Q. Ministry of Housing and Urban-Rural Development. In China Building Industry Energy Saving Report; China Architecture & Building Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Yu, S.; Eom, J.; Zhou, Y.; Evans, M.; Clarke, L. Scenarios of building energy demand for China with a detailed regional representation. Energy 2014, 67, 284–297. [Google Scholar] [CrossRef]
- Chang, C.; Zhu, N.; Yang, K.; Yang, F. Data and analytics for heating energy consumption of residential buildings: The case of a severe cold climate region of China. Energy Build. 2018, 172, 104–115. [Google Scholar] [CrossRef]
- Marszal, A.J.; Heiselberg, P.; Bourrelle, J.S.; Musall, E.; Karsten, V.; Sartori, I.; Napolitano, A. Zero energy building—A review of definitions and calculation methodologies. Energy Build. 2011, 43, 971–979. [Google Scholar] [CrossRef]
- Sartori, I.; Napolitano, A.; Voss, K. Net zero energy buildings: A consistent definition framework. Energy Build. 2012, 48, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Brambilla, A.; Salvalai, G.; Imperadori, M.; Sesana, M.M. Nearly zero energy building renovation: From energy efficiency to environmental efficiency, a pilot case study. Energy Build. 2018, 166, 271–283. [Google Scholar] [CrossRef]
- Sesana, M.M.; Salvalai, G. Overview on life cycle methodologies and economic feasibility for nZEBs. Build. Environ. 2013, 67, 211–216. [Google Scholar] [CrossRef]
- Ministry of Housing and Rural-Urban Development. Standard of Climatic Regionalization for Architecture; GB50178-93; Ministry of Housing and Urban-Rural Development: Beijing, China, 1994.
- Amecke, H. Buildings Energy Efficiency in China, Germany, and the United States; Climate Policy Initiative: San Francisco, CA, USA, 2013. [Google Scholar]
- Ministry of Housing and Urban-Rural Development. Design Standard for Energy Efficiency of Residential Buildings in Severe Cold and Cold Zones; JGJ26-2010; Ministry of Housing and Urban-Rural Development: Beijing, China, 2010; p. 36.
- Ministry of Housing and Urban-Rural Development. Design Standard for Energy Efficiency of Public Buildings; GB50189-2015; Ministry of Housing and Urban-Rural Development: Beijing, China, 2016.
- King, B. Design of Straw Bale Buildings: The State of the Art, 2nd ed.; Aschheim, M., Ed.; Green Building: San Rafael, CA, USA, 2006. [Google Scholar]
- Lacinski, P.; Bergeron, M. Serious Straw Bale: A Home Construction Guide for All Climates; Chelsea Green Publishing Company: White River Junction, VT, USA, 2000. [Google Scholar]
- Steen, A.S.; Steen, B.; Bainbridge, D. The Straw Bale House; Chelsea Green Publishing: White River Junction, VT, USA, 1994. [Google Scholar]
- ADRA. What is a Straw Bales Building? ADRA: Silver Spring, MD, USA, 2006. [Google Scholar]
- Gao, X.S. ADRA (Adventist Development Relief Agency). 2008. Available online: http://www.chinadevelopmentbrief.org.cn/news-13062.html (accessed on 27 July 2016).
- Cao, B.Z.; Yuan, B.; Duan, W.F.; Li, J.; Wen, M. Research and design on load bearing wall with green energy-saving straw bale. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Zurich, Switzerland, 2014. [Google Scholar]
- Menet, J.-L.; Gruescu, I.-C. A comparative life cycle assessment of exterior walls constructed using natural insulation materials. Environ. Eng. Sustain. Dev. Entrep. 2012, 1, 14. [Google Scholar]
- Pritchard, M.B.; Pitts, A. Evaluation of strawbale building: Benefits and risks. Archit. Sci. Rev. 2006, 49, 372–384. [Google Scholar] [CrossRef]
- MacDougall, C. Natural building materials in mainstream construction: Lessons from the UK. J. Green Build. 2008, 3, 3–14. [Google Scholar] [CrossRef]
- Goodhew, S.; Carfrae, J.; De Wilde, P. Briefing: Challenges related to straw bale construction. In Proceedings of the ICE—Engineering Sustainability; ICE Publishing: London, UK, 2010; pp. 185–189. [Google Scholar]
- Sodagar, B.; Rai, D.; Jones, B.; Wihan, J.; Fieldson, R. The carbon-reduction potential of straw-bale housing. Build. Res. Inf. 2011, 39, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Bigland-Pritchard, M. An Assessment of the Viability of Strawbale Wall Construction in Buildings in Maritime Temperate Climates, in School of Architecture; University of Sheffield: Sheffield, UK, 2005. [Google Scholar]
- Modcell. Technical. 2016. Available online: http://www.modcell.com/technical/ (accessed on 13 December 2016).
- Florig, H.K. Peer reviewed: China’s air pollution risks. Environ. Sci. Technol. 1997, 31, 274–279. [Google Scholar] [CrossRef]
- He, K.; Yang, F.; Ma, Y.; Zhang, Q.; Yao, X.; Chan, C.K.; Cadle, S.; Chan, T.; Mulawa, P. The characteristics of PM 2.5 in Beijing, China. Atmos. Environ. 2001, 35, 4959–4970. [Google Scholar] [CrossRef]
- Mestl, H.; Aunan, K.; Seip, J.M.; Wang, S.; Zhao, Y.; Zhang, D. Urban and rural exposure to indoor air pollution from domestic biomass and coal burning across China. Sci. Total Environ. 2007, 377, 12–26. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X. Analysis on residential energy conservation for straw-bale building. J. Build. Mater. 2005, 8, 109–112. [Google Scholar]
- Grain, S.A.O. China Grain Development Report 2016; China Social Science Press: Beijing, China, 2016. [Google Scholar]
- Li, L.; Wang, K.; Zhang, Q.; Li, J.; Yang, X.; Jin, J. Wheat straw burning and its associated impacts on Beijing air quality. Sci. China Ser. D Earth Sci. 2008, 51, 403–414. [Google Scholar] [CrossRef]
- Craig, W.; Wall, K.; Gross, C.; Walker, P.; Mander, T. Development and testing of a prototype straw bale house. In Proceedings of the ICE—Engineering Sustainability; ICE Publishing: London, UK, 2012; Volume 165, pp. 377–384. [Google Scholar]
- Maskell, D.; Gross, C.; Thomson, A.; Wall, K.; Walker, P.; Mander, T. Structural development and testing of a prototype house using timber and straw bales. In Proceedings of the ICE—Engineering Sustainability; ICE Publishing: London, UK, 2015; Volume 168, pp. 67–75. [Google Scholar]
- Shea, A.; Wall, K.; Walker, P. Evaluation of the thermal performance of an innovative prefabricated natural plant fibre building system. Build. Serv. Eng. Res. Technol. 2013, 34, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.; Heath, A.; Walker, P. The impact of external finishes on the weather resistance of straw bale walls. In Proceedings of the 11th International Conference on Non-conventional Materials and Technologies, Bath, UK, 6–9 September 2009. [Google Scholar]
- Chatterton, P. Towards an agenda for post-carbon cities: Lessons from LILAC, the UK’s first ecological, affordable cohousing community. Int. J. Urban Reg. Res. 2013, 37, 1654–1674. [Google Scholar] [CrossRef] [Green Version]
- International Constructions. LILAC: Low Impact Living Affordable Community. 2014. Available online: http://www.construction21.org/case-studies/h/lilac-low-impact-living-affordable-community.html (accessed on 2 January 2016).
- Clark, D. What Colour Is Your Building? RIBA: London, UK, 2013. [Google Scholar]
- Ecococon. Modular Building. 2016. Available online: https://ecococon.eu/ (accessed on 23 April 2020).
- Yao, S.; Luo, D.; Wang, J. Housing development and urbanisation in China. World Econ. 2014, 37, 481–500. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Mao, C.; Hou, L.; Wu, C.; Tan, J. A SWOT analysis for promoting off-site construction under the backdrop of China’s new urbanisation. J. Clean. Prod. 2018, 173, 225–234. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development. Design Code for Residential Buildings; GB50096-2011; Ministry of Housing and Urban-Rural Development: Beijing, China, 2011.
- China Institute of Building Standard Design & Research Co., Ltd. Standard for Prefabricated Concrete Cladding; 16J110-2/16G333; China Planning Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Cascone, S.; Rapisarda, R.; Cascone, D. Physical properties of straw bales as a construction material: A review. Sustainability 2019, 11, 3388. [Google Scholar] [CrossRef] [Green Version]
- Sabapathy, K.A.; Gedupudi, S. Straw bale based constructions: Measurement of effective thermal transport properties. Constr. Build. Mater. 2019, 198, 182–194. [Google Scholar] [CrossRef]
- Garas, G.; Allam, M.; El Dessuky, R. Straw bale construction as an economic environmental building alternative—A case study. J. Eng. Appl. Sci. 2009, 4, 54–59. [Google Scholar]
- Atkinson, C. Energy Assessment of a Straw Bale Building; University of East London: London, UK, 2008. [Google Scholar]
- Chaussinand, A.; Scartezzini, J.L.; Nik, V. Straw bale: A waste from agriculture, a new construction material for sustainable buildings. Energy Procedia 2015, 78, 297–302. [Google Scholar] [CrossRef]
- Dong, Y.; Cui, X.; Yin, X.; Chen, Y.; Guo, H. Assessment of energy saving potential by replacing conventional materials by Cross Laminated Timber (CLT)—A case study of office buildings in China. Appl. Sci. 2019, 9, 858. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Housing and Urban Rural Development & State Administration for Market Regulation. Technical Standard for Near Zero Energy Building; GB/T51350-2019; Ministry of Housing and Urban Rural Development & State Administration for Market Regulation: Beijing, China, 2019.
- Zhang, W. ‘Photovoltaic + Solar Heating’ Make Herdman have Warm Life. 2019. Available online: http://www.stdaily.com/index/kejixinwen/2019-12/25/content_847204.shtml (accessed on 6 January 2020). (In Chinese).
- Zhang, J.L. Spend Less for Warm Home. 2019. Available online: http://news.bjx.com.cn/html/20191231/1032798.shtml (accessed on 6 January 2020). (In Chinese).
- Zhou, H.; Zhang, L.; Yu, S.; Cao, P.; Jia, B.; Li, M.; Yin, H. A Study on Institutional Reform and Suggestions of Urban Thermal Supply System; Department of Social Development Research of DRC, The State Council: Beijing, China, 2016. (In Chinese)
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life Cycle Assessment (LCA) and Life Cycle Energy Analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Hammond, G.; Craig, J. Inventory of Carbon & Energy; University of Bath: Bath, UK, 2008. [Google Scholar]
- Van der Gon, H.A.C.D.; Neue, H.U. Influence of organic matter incorporation on the methane emission from a wetland rice field. Glob. Biogeochem. Cycles 1995, 9, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.; Heath, A.; Walker, P. Determining moisture levels in straw bale construction. Constr. Build. Mater. 2009, 23, 2763–2768. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, F. Assessment of embodied carbon emissions for building construction in China: Comparative case studies using alternative methods. Energy Build. 2016, 130, 330–340. [Google Scholar] [CrossRef]
- Holzhueter, K.; Itonaga, K. The influence of passive ventilation on the interstitial hygrothermal environment of a straw bale wall. J. Asian Archit. Build. Eng. 2014, 13, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Lawrence, M.; Daniel, M.; Chang, W. Construction and monitoring of experimental straw bale building in northeast China. Constr. Build. Mater. 2018, 183, 46–57. [Google Scholar] [CrossRef]
- USDA. China: Rice Production. 2018. Available online: https://ipad.fas.usda.gov/rssiws/al/crop_production_maps/China/China_rice.jpg (accessed on 18 January 2019).
- USDA. China: Total Wheat Production. 2018. Available online: https://ipad.fas.usda.gov/rssiws/al/crop_production_maps/China/China_wheat.jpg (accessed on 18 January 2018).
- Li, Y.; Zhang, W.; Ma, L.; Wu, L.; Shen, J.; Davies, W.; Oenema, O.; Zhang, F.; Dou, Z. An analysis of China’s grain production: Looking back and looking forward. Food Energy Secur. 2014, 3, 19–32. [Google Scholar] [CrossRef]
15 Study Cities by Climate Zones | |||||
---|---|---|---|---|---|
Climatic Regions | Sub-Regions | Index of Heating Degree Day (HDD) and Cooling Degree Day (CDD) (JGJ26-2010) | City | Longitude | Latitude |
Severe Cold Regions | Region 1A | 6000 ≤ HDD18 | Mohe | 122.53° E | 52.97°N |
Hailar | 119.70° E | 49.25°N | |||
Nenjiang | 125.23° E | 49.17°N | |||
Region 1B | 5000 ≤ HDD18 < 6000 | Dunhua | 128.20° E | 43.37°N | |
Qiqihar | 123.92° E | 47.24°N | |||
Harbin | 126.57° E | 45.93°N | |||
Region 1C | 3800 ≤ HDD18 < 5000 | Changchun | 125.68° E | 44.00°N | |
Shenyang | 123.52° E | 41.73°N | |||
Wulumuqi | 87.62° E | 43.78°N | |||
Cold Regions | Region 2A | 2000 ≤ HDD18 < 3800, CDD26 ≤ 90 | Taiyuan | 112.63° E | 37.75° N |
Lanzhou | 103.88° E | 36.05°N | |||
Dalian | 121.54° E | 38.97°N | |||
Region 2B | 2000 ≤ HDD18 < 3800, CDD26 > 90 | Beijing | 116.59° E | 40.08°N | |
Shijiazhuang | 114.35° E | 38.07°N | |||
Ji’nan | 116.98°E | 36.68°N |
Climatic Regions | Sub-Regions | U-Value (W/(m2·K)) | |||
---|---|---|---|---|---|
Building Construction | Simulated Standard Construction | PSBC (OTC) | PSBC (RTC) | ||
Severe Cold | Region 1A | Roof | 0.199 | 0.199 | 0.199 |
Wall | 0.242 | 0.150 | 0.168 | ||
Window | 1.600 | 1.600 | 1.600 | ||
Door | 1.436 | 1.436 | 1.436 | ||
Region 1B | Roof | 0.243 | 0.243 | 0.243 | |
Wall | 0.436 | 0.150 | 0.221 | ||
Window | 1.600 | 1.600 | 1.600 | ||
Door | 1.436 | 1.436 | 1.436 | ||
Region 1C | Roof | 0.243 | 0.243 | 0.243 | |
Wall | 0.436 | 0.150 | 0.221 | ||
Window | 1.600 | 1.600 | 1.600 | ||
Door | 1.436 | 1.436 | 1.436 | ||
Cold | Region 2A | Roof | 0.389 | 0.389 | 0.389 |
Wall | 0.573 | 0.150 | 0.245 | ||
Window | 1.600 | 1.600 | 1.600 | ||
Door | 1.692 | 1.692 | 1.692 | ||
Region 2B | Roof | 0.389 | 0.389 | 0.389 | |
Wall | 0.573 | 0.150 | 0.245 | ||
Window | 1.600 | 1.600 | 1.600 | ||
Door | 1.692 | 1.692 | 1.692 |
Sub-Climatic Regions | Region 1A | Region 1B | Region 1C | Region 2A | Region 2B |
---|---|---|---|---|---|
Heating period | 1 October−30 April | 10 October−10 April | 20 October−31 March | 10 November−20 March | 15 November−15 March |
Heating temperature | 20 °C in flat (required 18 °C in JGJ 26-2010) and 12 °C in corridors (required 12 °C in JGJ 26-2010) |
Bedroom | Living room | Bathroom | Kitchen | ||
---|---|---|---|---|---|
Occupied period | Weekday | 24:00−7:00 | 7:00−9:00 and 17:00−24:00 | 7:00−7:30 and 22:00−22:30 | Randomly 1 h between 17:00−19:00 |
Weekend | 24:00−9:00 | 0:00−24:00 | Randomly 1 h between 0:00−24:00 | Randomly 1 h between 0:00−24:00 | |
Lighting | 60 W | 180 W | 40 W | 40 W | |
Occupancy density | 2 persons/room | 2 persons | 2 persons | 2 persons | |
Equipment | 300 W | 200 W | 2000 W | 2600 W |
Climatic Area | Cities | Heating loads (W/m2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JGJ26-2010 Requirements | Simulated Standard Construction | PSBC (OTC) | PSBC (RTC) | ||||||||||
6F | 12F | 18F | 6F | 12F | 18F | 6F | 12F | 18F | 6F | 12F | 18F | ||
Region 1A | Mohe | 23.1 | 20.9 | 20.6 | 24.96 | 23.11 | 22.71 | 23.5 | 21.6 | 21.2 | 23.9 | 21.9 | 21.51 |
Hailar | 20.9 | 18.9 | 18.8 | 20.8 | 19.2 | 18.90 | 19.4 | 17.9 | 17.6 | 19.8 | 18.1 | 17.8 | |
Nenjiang | 20.7 | 18.6 | 18.5 | 19.8 | 18.3 | 18.02 | 18.5 | 17.1 | 16.8 | 18.9 | 17.3 | 17.0 | |
Region 1B | Dunhua | 18.0 | 16.5 | 15.2 | 21.6 | 19.3 | 18.55 | 18.0 | 15.6 | 14.9 | 19.0 | 16.6 | 16.0 |
Qiqihar | 19.8 | 18.1 | 16.7 | 21.3 | 19.0 | 18.20 | 17.7 | 15.3 | 14.6 | 18.7 | 16.3 | 15.7 | |
Harbin | 20.0 | 18.3 | 16.9 | 21.0 | 18.7 | 18.01 | 17.4 | 15.1 | 14.4 | 18.4 | 16.0 | 15.5 | |
Region 1C | Chang chun | 19.9 | 18.6 | 16.3 | 22.9 | 20.5 | 19.97 | 19.2 | 16.7 | 16.2 | 20.1 | 17.7 | 17.1 |
Shen yang | 17.2 | 15.9 | 13.9 | 16.9 | 14.9 | 14.44 | 13.8 | 11.8 | 11.3 | 14.6 | 12.6 | 12.1 | |
Wulu muqi | 18.7 | 17.4 | 15.4 | 19.8 | 17.5 | 16.93 | 16.4 | 14.1 | 13.5 | 17.2 | 15.0 | 14.4 | |
Region 2A | Taiyuan | 15.4 | 14.1 | 12.5 | 14.4 | 12.5 | 11.99 | 10.6 | 8.6 | 8.1 | 11.5 | 9.5 | 9.0 |
Lan zhou | 14.4 | 13.1 | 11.7 | 14.6 | 12.6 | 12.04 | 10.8 | 8.8 | 8.2 | 11.7 | 9.7 | 9.1 | |
Dalian | 14.3 | 13.0 | 11.5 | 16.8 | 15.0 | 14.58 | 12.6 | 10.7 | 10.3 | 13.6 | 11.7 | 11.3 | |
Region 2B | Beijing | 15.0 | 13.4 | 12.1 | 14.1 | 12.3 | 11.77 | 10.3 | 8.4 | 7.9 | 11.1 | 9.2 | 8.8 |
Shijia zhuang | 14.6 | 13.1 | 11.6 | 13.6 | 11.8 | 11.34 | 10.0 | 8.2 | 7.7 | 10.8 | 9.0 | 8.5 | |
Ji’nan | 13.2 | 11.7 | 10.5 | 11.6 | 10.0 | 9.62 | 8.3 | 6.7 | 6.3 | 9.0 | 7.4 | 7.0 |
Climatic Area | Cities | Comparison of Heating Requirements with Standard Requirements in JGJ26-2010 (%). | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Simulated Standard Construction | PSBC (OTC) | PSBC (RTC) | ||||||||
6F | 12F | 18F | 6F | 12F | 18F | 6F | 12F | 18F | ||
Region 1A | Mohe | +8.1 | +10.6 | +10.3 | +1.6 | +3.5 | +3.1 | +3.5 | +4.8 | +4.4 |
Hailar | –0.7 | +1.6 | +0.5 | −7.1 | −5.4 | −6.5 | −5.2 | −4.1 | −5.1 | |
Nenjiang | –4.3 | –1.5 | −2.6 | −10.4 | −8.3 | −9.4 | −8.5 | −7.0 | −8.1 | |
Region 1B | Dunhua | +20.2 | +17.1 | +22.0 | +0.2 | −5.6 | −2.0 | +5.7 | +0.4 | +5.1 |
Qiqihar | +7.6 | +4.8 | +9.0 | −10.4 | −15.5 | −12.6 | −5.5 | −10.2 | −6.2 | |
Harbin | +4.9 | +2.3 | +6.6 | −13.0 | −17.8 | −14.7 | −8.0 | −12.4 | −8.3 | |
Region 1C | Chang chun | +15.1 | +10.3 | +22.5 | −3.7 | −10.1 | −0.7 | +0.9 | −5.1 | +5.0 |
Shen yang | –1.5 | –6.1 | +3.9 | −19.6 | −25.9 | −18.7 | −15.1 | −20.9 | −13.1 | |
Wulu muqi | +5.7 | +0.7 | +9.9 | −12.3 | −18.9 | −12.1 | −7.8 | −14.0 | −6.6 | |
Region 2A | Tai yuan | –6.2 | –11.2 | −4.1 | −31.2 | −38.9 | −35.2 | −25.6 | −32.6 | −28.1 |
Lan zhou | +1.3 | –3.9 | +2.9 | −24.7 | −32.9 | −29.6 | −18.8 | −26.2 | −22.1 | |
Dalian | +17.4 | +15.4 | +26.8 | −11.9 | −17.7 | −10.6 | −5.3 | −10.1 | −2.0 | |
Region 2B | Beijing | –6.2 | –8.6 | −2.7 | −31.6 | −37.5 | −34.7 | −26.1 | −31.1 | −27.7 |
Shijia zhuang | –6.6 | –9.6 | −2.2 | −31.3 | −37.7 | −33.9 | −25.9 | −31.4 | −26.8 | |
Ji’nan | –12.5 | –14.4 | −8.4 | −37.4 | −43.1 | −40.2 | −31.9 | −36.6 | −33.1 |
Climatic Area | Cities | Reduction of Heating and Cooling Energy Consumptions | |||||
---|---|---|---|---|---|---|---|
PSBC (OTC) | PSBC (RTC) | ||||||
6F | 12F | 18F | 6F | 12F | 18F | ||
Region 1A | Mohe | 6.0% | 6.4% | 6.5% | 4.2% | 5.2% | 5.3% |
Hailar | 6.4% | 6.8% | 6.8% | 4.4% | 4.0% | 5.5% | |
Nenjiang | 6.3% | 6.8% | 6.8% | 4.3% | 5.4% | 5.5% | |
Region 1B | Dunhua | 16.7% | 19.3% | 19.7% | 12.1% | 14.2% | 13.9% |
Qiqihar | 16.1% | 18.7% | 19.1% | 11.6% | 13.7% | 13.3% | |
Harbin | 16.6% | 19.2% | 19.5% | 11.9% | 14.0% | 13.6% | |
Region 1C | Changchun | 15.8% | 17.8% | 18.3% | 11.8% | 13.3% | 13.7% |
Shenyang | 16.9% | 19.3% | 19.9% | 12.6% | 14.4% | 14.8% | |
Wulumuqi | 15.4% | 17.5% | 18.0% | 11.4% | 12.9% | 13.3% | |
Region 2A | Taiyuan | 22.6% | 26.1% | 27.1% | 16.9% | 19.5% | 20.2% |
Lanzhou | 22.7% | 26.3% | 27.3% | 16.8% | 19.5% | 20.3% | |
Dalian | 22.3% | 25.5% | 26.3% | 17.0% | 19.4% | 20.0% | |
Region 2B | Beijing | 19.1% | 21.5% | 22.1% | 14.6% | 16.4% | 16.8% |
Shijiazhuang | 18.3% | 20.6% | 21.1% | 13.9% | 15.5% | 15.9% | |
Ji’nan | 18.4% | 20.5% | 21.1% | 13.9% | 15.5% | 15.9% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Dong, Q.; Zhou, S.; Yu, J.; Huang, L.; Sun, C. Energy-Saving Potential of Applying Prefabricated Straw Bale Construction (PSBC) in Domestic Buildings in Northern China. Sustainability 2020, 12, 3464. https://doi.org/10.3390/su12083464
Yin X, Dong Q, Zhou S, Yu J, Huang L, Sun C. Energy-Saving Potential of Applying Prefabricated Straw Bale Construction (PSBC) in Domestic Buildings in Northern China. Sustainability. 2020; 12(8):3464. https://doi.org/10.3390/su12083464
Chicago/Turabian StyleYin, Xunzhi, Qi Dong, Siyuan Zhou, Jiaqi Yu, Lu Huang, and Cheng Sun. 2020. "Energy-Saving Potential of Applying Prefabricated Straw Bale Construction (PSBC) in Domestic Buildings in Northern China" Sustainability 12, no. 8: 3464. https://doi.org/10.3390/su12083464