A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model
Abstract
:1. Introduction
2. Literature Review
2.1. Growing Cities, Shrinking Cities, and Vacant Land
2.2. Historical Urban Land Use Change Models
2.3. The Land Transformation Model (LTM)
3. Literature Gaps and Research Objective
4. Methods
4.1. Study Area
4.2. Model Specification: The Land Transformation Model (LTM)
4.3. Variable and Data
4.4. Model Reliability and Accuracy
5. Results
5.1. Possible Scenarios of Vacancy Patterns by 2020 and LTM Output Statistics
5.2. Influence of Vacancy Determinants in Two Types of Cities
6. Discussion
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Newman, G. Forecasting urban vacancy dynamics in a shrinking city: A land transformation model. ISPRS Int. J. Geo-Inf. 2017, 6, 124. [Google Scholar]
- DeSA, U. World Population Prospects: The 2012 Revision; Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat: New York, NY, USA, 2013. [Google Scholar]
- Martinez-Fernandez, C.; Weyman, T.; Fol, S.; Audirac, I.; Cunningham-Sabot, E.; Wiechmann, T.; Yahagi, H. Shrinking cities in australia, japan, europe and the USA: From a global process to local policy responses. Prog. Plan. 2016, 105, 1–48. [Google Scholar] [CrossRef]
- Lutz, W.; Butz, W.P.; Samir, K.E. World Population & Human Capital in the Twenty-First Century: An Overview; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Newman, G.; Park, Y.; Lee, R.J. Vacant urban areas: Causes and interconnected factors. Cities 2018, 72, 421–429. [Google Scholar] [CrossRef]
- Pagano, M.; Bowman, A. Vacant land as opportunity and challenge. In Recycling the City: The Use and Reuse of Urban Land; Lincoln Institute: Cambridge, MA, USA, 2004. [Google Scholar]
- Martinez-Fernandez, C.; Audirac, I.; Fol, S.; Cunningham-Sabot, E. Shrinking cities: Urban challenges of globalization. Int. J. Urban Reg. Res. 2012, 36, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Drake, L.; Lawson, L.J. Validating verdancy or vacancy? The relationship of community gardens and vacant lands in the U.S. Cities 2014, 40, 133–142. [Google Scholar] [CrossRef]
- Lin, J.; Chen, T.; Han, Q. Simulating and Predicting the Impacts of Light Rail Transit Systems on Urban Land Use by Using Cellular Automata: A Case Study of Dongguan, China. Sustainability 2018, 10, 1293. [Google Scholar] [CrossRef]
- Newman, G.; Lee, J.; Berke, P. Using the land transformation model to forecast vacant land. J. Land Use Sci. 2016, 11, 450–475. [Google Scholar] [CrossRef]
- Narain, V. Growing city, shrinking hinterland: Land acquisition, transition and conflict in Peri-Urban Gurgaon, India. Environ. Urban. 2009, 21, 501–512. [Google Scholar] [CrossRef]
- Giffinger, R.; Haindlmaier, G.; Kramar, H. The role of rankings in growing city competition. Urban Res. Pract. 2010, 3, 299–312. [Google Scholar] [CrossRef]
- Weller, R. Planning by design landscape architectural scenarios for a rapidly growing city. J. Landsc. Arch. 2008, 3, 18–29. [Google Scholar] [CrossRef]
- Schilling, J.; Logan, J. Greening the rust belt: A green infrastructure model for right sizing america's shrinking cities. J. Am. Plan. Assoc. 2008, 74, 451–466. [Google Scholar] [CrossRef]
- Reckien, D.; Martinez-Fernandez, C. Why do cities shrink? Eur. Plan. Stud. 2011, 19, 1375–1397. [Google Scholar] [CrossRef]
- Hollander, J.B.; Pallagst, K.; Schwarz, T.; Popper, F. Planning shrinking cities. Progr. Plan. 2009, 72, 223–232. [Google Scholar]
- Keenan, P.; Lowe, S.; Spencer, S. Housing abandonment in inner cities-the politics of low demand for housing. Hous. Stud. 1999, 14, 703–716. [Google Scholar] [CrossRef]
- Anselin, L.; Griffiths, E.; Tita, G. Crime mapping and hot spot analysis. Environ. Criminol. Crime Anal. 2008, 97–116. [Google Scholar]
- Landis, J.D.; Birch, E.; Wachter, S. Urban growth models: State of the art and prospects. In Global Urbanizion; Penn Press: Philadelphia, PA, USA, 2011; pp. 126–140. [Google Scholar]
- Ewing, R.; Bartholomew, K. Comparing land use forecasting methods: Expert panel versus spatial interaction model. J. Am. Plan. Assoc. 2009, 75, 343–357. [Google Scholar] [CrossRef]
- Lowry, I.S. A Model of Metropolis; Rand Corp Santa Monica Calif: Santa Monica, CA, USA, 1964. [Google Scholar]
- Swerdloff, C.N. Test of some first generation residential land use models. Public Roads 1966, 34, 201–109. [Google Scholar]
- Briassoulis, H. Land-use policy and planning, theorizing, and modeling: Lost in translation, found in complexity? Environ. Plan. B Plan. Des. 2008, 35, 16–33. [Google Scholar] [CrossRef]
- Sayer, R. Understanding urban models versus understanding cities. Environ. Plan. A 1979, 11, 853–862. [Google Scholar] [CrossRef]
- Theobald, D.M.; Hobbs, N.T. Forecasting rural land-use change: A comparison of regression-and spatial transition-based models. Geogr. Environ. Model. 1998, 2, 65–82. [Google Scholar]
- Waddell, P. Urbansim: Modeling urban development for land use, transportation, and environmental planning. J. Am. Plan. Assoc. 2002, 68, 297–314. [Google Scholar] [CrossRef]
- Batty, M.; Xie, Y.; Sun, Z. Modeling urban dynamics through gis-based cellular automata. Comput. Environ. Urban Syst. 1999, 23, 205–233. [Google Scholar] [CrossRef]
- Torrens, P.M. Cellular automata and multi-agent systems as planning support tools. In Planning Support Systems in Practice; Springer: Berlin, Germany, 2003; pp. 205–222. [Google Scholar]
- Clarke, K.C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San francisco bay area. Environ. Plan. B Plan. Des. 1997, 24, 247–261. [Google Scholar] [CrossRef]
- Pijanowski, B.; Shellito, B.; Bauer, M.; Sawaya, K. Using Gis, Artificial Neural Networks And Remote Sensing To Model Urban Change in the Minneapolis–St. Paul and Detroit Metropolitan Areas. In Proceedings of the American Society of Photogrammetry and Remote Sensing annual conference, St. Louis, MO, USA, 23–27 April 2001. [Google Scholar]
- Pijanowski, B.C.; Tayyebi, A.; Doucette, J.; Pekin, B.K.; Braun, D.; Plourde, J. A big data urban growth simulation at a national scale: Configuring the gis and neural network based land transformation model to run in a high performance computing (hpc) environment. Environ. Modelling Softw. 2014, 51, 250–268. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Sternlieb, G.; Burchell, R.W.; Hughes, J.W.; James, F.J. Housing abandonment in the urban core. J. Am. Inst. Plan. 1974, 40, 321–332. [Google Scholar] [CrossRef]
- Spelman, W. Abandoned buildings: Magnets for crime? J. Crim. Justice 1993, 21, 481–495. [Google Scholar] [CrossRef]
- Downs, A. Some realities about sprawl and urban decline. Hous. Policy Debate 1999, 10, 955–974. [Google Scholar]
- Pagano, M.A.; Bowman, A.O.M. Vacant land in Cities: An Urban Resource; Brookings Institution: Washington, DC, USA, 2000. [Google Scholar]
- Rappaport, J. US urban decline and growth, 1950 to 2000. Econ. Rev. Fed. Res. Bank Kansas City 2003, 88, 15–44. [Google Scholar]
- Hollander, J.B.; Németh, J. The bounds of smart decline: A foundational theory for planning shrinking cities. Hous. Policy Debate 2011, 21, 349–367. [Google Scholar] [CrossRef]
- Lang, T. Insights in the British Debate about Urban Decline and Urban Regeneration. Available online: https://leibniz-irs.de/fileadmin/user_upload/IRS_Working_Paper/wp_insights.pdf (accessed on 9 May 2018).
- Oyebode, O. Application of Gis and Land Use Models-Artificial Neural Network Based Land Transformation Model for Future Land Use Forecast and Effects of Urbanization within the Vermillion River Watershed; Saint Mary’s University of Minnesota Central Services Press: Winona, MN, USA, 2007. [Google Scholar]
- Nemeth, J.; Hollander, J. Security zones and New York City's shrinking public space. Int. J. Urban Reg. Res. 2010, 34, 20–34. [Google Scholar] [CrossRef]
- Buhnik, S. From shrinking cities to toshi no shukushō: Identifying patterns of urban shrinkage in the osaka metropolitan area. Berkeley Plan. J. 2010, 23, 132–155. [Google Scholar]
- Lindsey, C. Smart decline. Panorama: What’s New in Planning; University of Pennsylvania Press: Philadelphia, PA, USA, 2007. [Google Scholar]
- Németh, J.; Langhorst, J. Rethinking urban transformation: Temporary uses for vacant land. Cities 2014, 40, 143–150. [Google Scholar] [CrossRef]
- Rieniets, T. Shrinking cities: Causes and effects of urban population losses in the twentieth century. Nat. Cult. 2009, 4, 231–254. [Google Scholar] [CrossRef]
- Audirac, I. Urban Shrinkage amid Fast Metropolitan Growth (Two Faces of Contemporary Urbanism). 2007. Available online: http://www.coss.fsu.edu/durp/sites/coss.fsu.edu.durp/files/Audirac2009.pdf (accessed on 25 September 2009).
- Cunningham-Sabot, E.; Fol, S. Shrinking cities in france and great britain: A silent process. In The Future of Shrinking Cities: Problems, Patterns and Strategies of Urban Transformation in a Global Context; University of California: Oakland, CA, USA, 2009; pp. 17–28. [Google Scholar]
- Rybczynski, W.; Linneman, P.D. How to save our shrinking cities. Public Interest 1999, 30, 30–44. [Google Scholar]
- Bontje, M. Facing the challenge of shrinking cities in East Germany: The case of leipzig. GeoJournal 2005, 61, 13–21. [Google Scholar] [CrossRef]
- Johnson, M.P.; Hollander, J.; Hallulli, A. Maintain, demolish, re-purpose: Policy design for vacant land management using decision models. Cities 2014, 40, 151–162. [Google Scholar] [CrossRef]
- Ryan, B.D. Design after Decline: How America Rebuilds Shrinking Cities; University of Pennsylvania Press: Philadelphia, PA, USA, 2012. [Google Scholar]
- Henry, M.S.; Schmitt, B.; Piguet, V. Spatial econometric models for simultaneous systems: Application to rural community growth in France. Int. Reg. Sci. Rev. 2001, 24, 171–193. [Google Scholar] [CrossRef]
- Conway, T. The impact of class resolution in land use change models. Comput. Environ. Urban Syst. 2009, 33, 269–277. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Shukla, M.; Kok, R.; Prasher, S.; Clark, G.; Lacroix, R. Use of artificial neural networks in transient drainage design. Trans. ASAE 1996, 39, 119–124. [Google Scholar] [CrossRef]
- Congalton, R.G.; Oderwald, R.G.; Mead, R.A. Assessing landsat classification accuracy using discrete multivariate analysis statistical techniques. Photogramm. Eng. Remote Sens. 1983, 49, 1671–1678. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Applications; Lewis Pub-Lishers: Boca Raton, FL, USA, 1999. [Google Scholar]
- Pontius, R.G., Jr.; Millones, M. Death to kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica Biochem. Medica 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Almeida, C.D.; Gleriani, J.; Castejon, E.F.; Soares-Filho, B. Using neural networks and cellular automata for modelling intra-urban land-use dynamics. Int. J. Geogr. Inf. Sci. 2008, 22, 943–963. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Brown, D.G.; Shellito, B.A.; Manik, G.A. Using neural networks and gis to forecast land use changes: A land transformation model. Comput. Environ. Urban Syst. 2002, 26, 553–575. [Google Scholar] [CrossRef]
- Pijanowski, B.; Alexandridis, K.; Mueller, D. Modelling urbanization patterns in two diverse regions of the world. J. Land Use Sci. 2006, 1, 83–108. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pekin, B.K.; Pijanowski, B.C.; Plourde, J.D.; Doucette, J.S.; Braun, D. Hierarchical modeling of urban growth across the conterminous USA: Developing meso-scale quantity drivers for the land transformation model. J. Land Use Sci. 2013, 8, 422–442. [Google Scholar] [CrossRef]
- Pontius, R.G. Quantification error versus location error in comparison of categorical maps. Photogramm. Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Pontius, R.G., Jr.; Millones, M. Problems and Solutions for Kappa-Based Indices of Agreement; Studying, Modeling and Sense Making of Planet Earth: Mytilene, Greece, 2008. [Google Scholar]
- Pontius, R.G., Jr.; Schneider, L.C. Land-cover change model validation by an ROC method for the Ipswich Watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Si, K. The total operating characteristic to measure diagnostic ability for multiple thresholds. Int. J. Geogr. Inf. Sci. 2014, 28, 570–583. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Batchu, K. Using the relative operating characteristic to quantify certainty in prediction of location of land cover change in India. Trans. GIS 2003, 7, 467–484. [Google Scholar] [CrossRef]
- Osborne, P.E.; Alonso, J.; Bryant, R. Modelling landscape-scale habitat use using gis and remote sensing: A case study with great bustards. J. Appl. Ecol. 2001, 38, 458–471. [Google Scholar] [CrossRef]
- Rutherford, G.N.; Bebi, P.; Edwards, P.J.; Zimmermann, N.E. Assessing land-use statistics to model land cover change in a mountainous landscape in the european alps. Ecol. Modelling 2008, 212, 460–471. [Google Scholar] [CrossRef]
- Chicago Metropolitan Agency for Planning. Land Use Inventory 2010; Chicago Metropolitan Agency for Planning: Chicago, IL, USA, 2010.
- Grogan-Kaylor, A.; Woolley, M.; Mowbray, C.; Reischl, T.M.; Gilster, M.; Karb, R.; MacFarlane, P.; Gant, L.; Alaimo, K. Predictors of neighborhood satisfaction. J. Community Pract. 2006, 14, 27–50. [Google Scholar] [CrossRef]
- Lee, S.M. The Association between Neighborhood Environment and Neighborhood Satisfaction: Moderating Effects of Demographics; Health and Human Services: Washington, DC, USA, 2010.
- Yang, Y. A tale of two cities: Physical form and neighborhood satisfaction in metropolitan portland and charlotte. J. Am. Plan. Assoc. 2008, 74, 307–323. [Google Scholar] [CrossRef]
- Park, Y.; Huang, S.-K.; Newman, G.D. A statistical meta-analysis of the design components of new urbanism on housing prices. J. Plan. Lit. 2016, 31, 435–451. [Google Scholar] [CrossRef]
Top 5 Fastest Growing Cities | Top 5 Most Depopulating Cities | ||
---|---|---|---|
City | Population Change | City | Population Change |
Fort Worth (TX)1 | 206,512 (39%) | Detroit (MI) | −237,493 (−25%) |
Charlotte (NC) | 190,596 (35%) | Chicago (IL)2 | −200,418 (−7%) |
San Antonio (TX) | 182,761 (16%) | New Orleans (LA) | −140,845 (−29%) |
New York (NY) | 166,855 (2%) | Cleveland (OH) | −81,588 (−17%) |
Houston (TX) | 145,820 (7%) | Cincinnati (OH) | −34,342 (−10%) |
Input Factors | Input Patterns | Explanation | References for Input Factors | |
---|---|---|---|---|
Fort Worth | Chicago | |||
Unemployment Rate | O | O | Unemployment rate of civilian population in labor force (16 years and over) | Fee and Hartley (2011), Aryeetey-Attoh et al. (2015), and Mallach (2012) |
Service Industry | O | O | Share of service industry to all industries | Glaeser (2013), Fee and Hartley (2011), Mallach (2012), Glaeser and Kahn (2004), Lester et al. (2014), and Cochrane et al. (2013) |
Secondary Industry | O | O | Share of Secondary industry to all industries | Glaeser (2013), Fee and Hartley (2011), Mallach (2012), Glaeser & Kahn (2004), Wegener (1982), Dong (2013), and Cochrane et al. (2013) |
Household Income | O | O | Median household income (Inflation adjusted dollars) | Glaeser (2013), Fee and Hartley (2011), Ryan (2012), and Aryeetey-Attoh et al. (2015) |
Education | O | O | Percentage of persons 25 years of age and older, with less than or equal to high school graduate (includes equivalency) | Glaeser (2013), Fee and Hartley (2011), Mallach (2012), and Parka and Cioricib (2015) |
Poverty | O | O | Individual Poverty Rate: Individuals below poverty= “under 0.50” + “0.50 to 0.74” + “0.75 to 0.99”). | Glaeser (2013), Fee and Hartley (2011), Ryan (2012), Parka and Cioricib (2015), and Mallach and Brachman (2010) |
Ethnicity | O | O | Proportion of non-white Population to total population | Ryan (2012), Fee and Hartley (2011), Massey and Denton (1993), Sugrue (1996), and Hollander (2010) |
Crime | O | Total numbers of crime that occurred in the city | Kuo and Sulivan (2001), Cui and Walsh (2015). Spelman (1993), and Jones and Pridemore (2013) | |
Home Ownership | O | O | Share of owner occupied to all occupied housing units | Bradfort (1979), Pond and Yeates (2013), Aryeetey-Attoh et al. (2015), Parka and Cioricib (2015), Hoyt (1993), and Temkin and Rohe (1996) |
Housing Value | O | O | Median housing value for all owner-occupied housing units ($) | Glaeser and Gyourko (2001), Capozza and Helsley (1989), Dong (2013), Aryeetey-Attoh et al. (2015), and Hollander (2010) |
Mobile Homes | O | Share of mobile home to all housing units | Glaeser and Gyourko (2001), Capozza and Helsley (1989), Dong (2013), Aryeetey-Attoh et al. (2015), and Hollander (2010) | |
Vacancy | O | O | Vacancy rate to all housing units | Dong (2013), and Mallach (2012) |
Population Change | O | O | Zero or negative population change between each period | Wegener (1982), Pond and Yeates (2013), and Dong (2013) |
Parcel Size | O | O | Parcel size of lots smaller than 5000 square foot | Colwell and Munneke (1997), Carrion-Flores and Irwin (2004), Pond and Yeates (2013), and Lester, et al. (2014) |
Age of Buildings | O | O | Age of buildings built before 1950 (except buildings in historical preservation districts) | Wegener (1982) |
Railroad | O | O | Proximity to railroads | Rappaport (2003), Bourne (1996), and Lester, et al. (2014) |
Highway | O | O | Proximity to highways | Rappaport (2003), Bourne (1996), Dong (2013), and Lester, et al. (2014) |
Accessibility | O | Share of no vehicle available housing units to all occupied housing units | Rappaport (2003), Bourne (1996), Dong (2013), and Lester, et al. (2014) | |
Number of Variables | 15 | 18 | --- | --- |
City | No. of Input Factors | Highest Training Probability | PCM 1 (%) | Kappa 2 | QD (%) | AD (%) | OA 3 (%) | AUC 4 |
---|---|---|---|---|---|---|---|---|
Fort Worth, TX | 15 | 90,000th | 54.7 | 0.50 | 0.0 | 9.6 | 90.4 | 0.77 |
Chicago, IL | 18 | 40,000th | 50.9 | 0.48 | 0.0 | 3.7 | 96.3 | 0.75 |
Variable | City of Fort Worth | City of Chicago | Diff (1)–(2) | ||||||
---|---|---|---|---|---|---|---|---|---|
PCM | Kappa | Rank | Influence (1) | PCM | Kappa | Rank | Influence (2) | ||
Unemployment | 52.2 | 0.47 | 14 | 0.93 | 50.5 | 0.48 | 1 | 0.00 | 0.93 |
Secondary Industry * | 55.1 * | 0.5 | 1 | 0.00 | 48.9 | 0.46 | 9 | 0.47 | 0.47 |
Service Industry | 54.4 | 0.49 | 4 | 0.21 | 49.9 | 0.47 | 3 | 0.12 | 0.10 |
Income | 52.6 | 0.47 | 12 | 0.79 | 50.1 | 0.47 | 2 | 0.06 | 0.73 |
Education | 53.5 | 0.48 | 9 | 0.57 | 49.8 | 0.47 | 4 | 0.18 | 0.39 |
Poverty | 54.7 | 0.49 | 2 | 0.07 | 49.0 | 0.46 | 7 | 0.35 | 0.28 |
Ethnicity | 52.6 | 0.47 | 13 | 0.86 | 48.6 | 0.46 | 11 | 0.59 | 0.27 |
Crime | - | - | - | 48.3 | 0.46 | 13 | 0.71 | - | |
Ownership | 53.5 | 0.48 | 7 | 0.43 | 49.6 | 0.47 | 5 | 0.24 | 0.19 |
Housing Value | 47.8 | 0.42 | 15 | 1.00 | 47.9 | 0.45 | 14 | 0.76 | 0.24 |
Mobile Homes | - | - | - | 46.0 | 0.43 | 16 | 0.88 | - | |
Vacant Rate | 53.5 | 0.48 | 8 | 0.50 | 47.8 | 0.45 | 15 | 0.82 | 0.32 |
Population Change | 52.7 | 0.47 | 11 | 0.71 | 49.3 | 0.47 | 6 | 0.29 | 0.42 |
Parcel Size | 54.3 | 0.49 | 5 | 0.29 | 48.9 | 0.46 | 8 | 0.41 | 0.13 |
Built Year | 54.5 | 0.49 | 3 | 0.14 | 48.6 | 0.46 | 12 | 0.65 | 0.50 |
Railroads | 53.5 | 0.48 | 6 | 0.36 | 48.7 | 0.46 | 10 | 0.53 | 0.17 |
Accessibility | - | - | - | 45.8 | 0.43 | 17 | 0.94 | - | |
Highway | 53.1 | 0.48 | 10 | 0.64 | 45.5 | 0.43 | 18 | 1.00 | 0.36 |
Full Model | 54.7 | 0.50 | 50.9 | 0.48 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Newman, G.; Park, Y. A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model. Sustainability 2018, 10, 1513. https://doi.org/10.3390/su10051513
Lee J, Newman G, Park Y. A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model. Sustainability. 2018; 10(5):1513. https://doi.org/10.3390/su10051513
Chicago/Turabian StyleLee, Jaekyung, Galen Newman, and Yunmi Park. 2018. "A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model" Sustainability 10, no. 5: 1513. https://doi.org/10.3390/su10051513
APA StyleLee, J., Newman, G., & Park, Y. (2018). A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model. Sustainability, 10(5), 1513. https://doi.org/10.3390/su10051513