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Abstract: Every city seeks opportunities to spur economic developments and, depending on its
type, vacant land can be seen as a potential threat or an opportunity to achieve these developments.
Although vacant land exists in all cities, the causes and effects of changes in vacant land can differ.
Growing cities may have more vacant land than shrinking cities because of large scale annexation.
Meanwhile, depopulation and economic downturn may increase the total amount of vacant and
abandoned properties. Despite various causes of increase and decrease of vacant land, the ability
to predict future vacancy patterns—where future vacant parcels may occur—could be a critical test
to set up appropriate development strategies and land use policies, especially in shrinking cities,
to manage urban decline and regeneration efforts more wisely. This study compares current and
future vacancy patterns of a growing city (Fort Worth, TX, USA) and a shrinking city (Chicago,
IL, USA), by employing the Land Transformation Model (LTM) to predict for future vacant lands.
This research predicts and produces possible vacancy pattern scenarios by 2020 and deciphers the
ranking of determinants of vacant land in each city type. The outcomes of this study indicate that the
LTM can be useful for simulating vacancy patterns and the causes of vacancy vary in both growing
and shrinking cities. Socio-economic factors such as unemployment rate and household income
are powerful determinants of vacancy in a growing city, while physical and transportation-related
conditions such as proximity to highways, vehicle accessibility, or building conditions show a stronger
influence on increasing vacant land in a shrinking city.

Keywords: vacant land; urban regeneration; urban land use change model; land transformation model

1. Introduction

Many countries have experienced large waves of urban growth, globally [1]. The United Nations
(2013) projects the world will add 2.3 billion more people by 2050 with the population reaching
9.8 billion; the proportion of urban populations will rise from 3.6 to 6.3 billion, which accounts nearly
67% of the world’s population [1,2]. However, population increases are not distributed equally
among all cities. Several developed countries including Germany and Japan have experienced
stagnant population growth in many large cities while other cities in developing countries such
as China and India are growing rapidly, resulting in an uneven population distribution. For example,
Japan’s top 10 cities lost 12.9% of total population between 1990 and 2007. This is a relatively large
loss when compared to the overall population change of −1.01% across Japan [3]. Meanwhile,
the 2010 Census revealed that the total population of Beijing increased by 44% over the last decade,
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a considerably large number when considering the average population growth in 1990 was 1.5%,
0.8% in 2000, and 0.5% in 2010 [4]. Deindustrialization, globalization, urban decentralization,
suburbanization, and changing household demographics are typically listed as the main drivers of
fluxes in population [5]. Depopulating cities mostly struggle from socio-economic declines, decreased
tax revenue, and increased vacant land/abandoned structures. As Bowman and Pagano (2004)
mentioned [6], vacant land is not always bad. Temporal vacant patterns can be observed as a part of
industrial restructuring process from manufacturing to service; or it can be seen as potential resource
for future development or habitat. Inversely, an excess of abandoned structures or underutilized
land could possibly cause economic, social and environmental problems such as urban disinvestment,
reduced tax revenues, overburdened social programs, increased stock of vacant housing, and increased
crime and poverty [7]. As such, forecasting future vacant land dynamics can be socially, physically and
environmentally beneficial for both growing and shrinking cities and is critical first step to develop
proactive land use policies [6,8,9] in an effort to not waste public funds to operate or maintain under-
or unused facilities and public services. Due to technological constraints and time limits, unfortunately,
few academic studies and planning practices seek to advance land use prediction modeling, especially
in regard to vacant properties.

To fill this gap, this research attempts to develop urban vacancy prediction scenarios using The
Land Transformation Model (LTM) and eighteen determinants of vacant land prediction [10]. The LTM
is a land use prediction tool that is operated by artificial neural networks (ANNs) through Geographic
Information Systems (GIS). Using the 1990 and 2000 data, LTM produced 2020 vacant land prediction
scenarios and the level of accuracy assessment tests were also performed. In particular, this research
attempts to explore which factors contribute to creating vacant land and the degree of influence of these
determinants in two different types of cities: shrinking and growing. In terms of defining growing and
shrinking cities, population, employment growth, or age distribution are well-known critical factors
to analyze the patterns of city growth trends. This research only highlights the population change
to define growing and shrinking cities. Shrinking cities are cities losing population and growing are
gaining in population. Chicago, IL, USA was chosen as a study area to represent a shrinking city, while
Fort Worth, TX, USA is used to represent a growing city. The outcomes of this study are expected to
guide well-informed policies for vacant properties and be utilized by planners and policy makers in
charge and used as a rationale to cope with temporal and chronic vacancy issues, and consequently,
the accurate prediction model can contribute to a successful and sustainable urban environment.

2. Literature Review

2.1. Growing Cities, Shrinking Cities, and Vacant Land

There are various ways to define growing and shrinking cities, but most definitions are based on
the demographic, physical, social, and economic conditions of municipalities. Growing cities are often
recognized as cities with a rapid population increase and economic intensification [11–13]. In these
cities, economic growth typically increases the demand and supply in both workers and consumers,
resulting in accompanied population growth and housing, infrastructure, and public service needs.
The U.S Census Bureau and the Brookings Institution also listed the fastest growing cities based on
population and employment growth data.

Like growing cities, population is the most popular criteria to identify a shrinking city.
While depopulation alone does not always necessarily mean a city is declining, this condition can
often act as a catalyst for urban decline and socio-economic shifts. Schilling and Logan (2008) defined
a shrinking city as older industrial city losing more than 25% in population over the last 40 years [14].
Reckien and Martinez-Fernandez (2011) define shrinking cities as urban areas that have experienced
depopulation, employment loss or/and economic downturns over the past 40–50 years [15]. In 2004,
the Shrinking Cities International Research Network (SCIRN) was launched at the instigation of the
University of California, Berkeley and highlighted the combination of population and economic decline
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simultaneously. They defined a shrinking city as an urban area with more than 10,000 residents that
have experienced depopulation for more than two years resulting in economic crisis [16].

Massively shrinking cities are often accompanied by physical decay. Therefore, increased
vacancies and abandonment is typically an issue related to urban shrinkage. Property owners of
vacant structures are likely to neglect up-keeping efforts of ownership such as paying taxes, paying
utility bills, maintaining yards, or fixing housing structures over the years [17]. These abandoned and
neglected sites can also be catalysts for eventual increases in criminal activity [18]. Neighborhoods
with a large amount of unoccupied lots may have difficulty in re-selling nested properties because
their market values are often depreciated. This causes a decrease in tax revenues for municipalities,
typically resulting in lower support for public improvements and maintenance. As a consequence,
more people leave the city.

It is important to note the difference in vacant land types across cities. Vacant land does not only
include brown or grayfields with lower levels of occupancy. It can also be developable greenfields or
simply empty or underperforming areas; some municipalities even classify agricultural or recreational
land as vacant. A survey on vacant land amounts by Newman et al. (2016) showed green spaces
be the most common type [10]. Greenfields (61.9%), unused agricultural lands (49.2%), brownfields
(47.6%) and derelict open space (33.3%) rounded out the top 5 listed types of vacant lands. Regionally,
Southern cities had a higher preponderance of unused agricultural lands, while Midwestern cities
reported a greater prevalence of brownfields. Given this situation, vacant land can be either a good or
bad, depending on the type. Some types of vacant land can remain as unused for future developments,
provide habitat for ecosystems, or can provide green space for residents. Insufficient vacant land in
rapidly growing cities can limit the expansion of cities. Inversely, if a city has overwhelming amounts
of abandoned structures, it will tend to indicate long cycles of shrinkage. Therefore, one of the primary
planning goals of shrinking cities is how to convert vacant properties into valued community assets
and how to effectively manage vacant land supplies. New technologies have significantly aided in
this plight.

2.2. Historical Urban Land Use Change Models

As computer systems and federal data organizations in the late 1950s and mid-1960s were
developed, urban growth and land use change models emerged to help manage future growth [19].
Most land use change models were initially developed to predict the economic and environmental
impacts of land-use transportation policies. In 1959, basic gravity models were employed to investigate
the attractiveness and accessibility of cities in metropolitan areas for future development [20].
Lowry (1964) also applied a transportation model to allocate future residential and service employment
zones based on the analysis of travel costs and attractiveness of in the Pittsburgh region [21].
Econometric models are the most common statistical technique, using multiple regression analysis.
After Swerdloff and Stowers integrated statistical techniques into prediction modeling in 1966 [22],
Chapin and Weiss introduced a probabilistic model of residential growth in 1968, and statistical
models are still employed in several related current studies [23]. Statistical models were employed to
analyze the problems involving economic demand and supply, but the application of these techniques
proved useful in analyzing the relationship between the distribution of land use types and other
driving factors and estimating the layout of urban land uses based on principle of economic/market
equilibrium [23]. However, these traditional econometric models were criticized because the modeling
processes were too static; aggregated macro-scale data were used due to the limitation of data collection
and technology [24]. Since the statistics-based models basically assumed long term, linear relationships
and temporal stationarity, it was restrictive to apply the models to real conditions. In order to assuage
this condition, different empirical models such as non-linear statistical methods and artificial neural
networks were coupled with advanced computing abilities.



Sustainability 2018, 10, 1513 4 of 17

2.3. The Land Transformation Model (LTM)

The regression models focus on identifying functional relationships between spatial input factors
and input patterns [25]. More recently, in an effort to solve many urban issues, planners have
slowly moved into spatial and temporal models which produce realistic landscape patterns more
scientifically and technologically. UrbanSim [26], Cellular Automata models [27,28] and SLEUTH [29]
have remarkably grown in the last 30 years [10]. Since these models simulate transitions using spatially
explicit digital maps, graphical outputs can be provided, and they rely not only on economic theories,
but also reflect real situations and historical urban trends. Recently, land use and cover change (LUCC)
models comprised of Geographic Information Systems (GIS) and artificial neural networks (ANNs)
such as the LTM, have grown in popularity to analyze spatio-temporal land use changes, estimate the
impacts of urban growth alterations and forecast land use changes [10,30]. Through a preprocessing
process with GIS tools, historical spatial data layers are controlled managed, while, ANNs learn about
input patterns (historical land use dynamics) and influential drivers (input factors) [31,32]. While most
computer modeling tools focus on regional scales analyses, there is a lack of local scaled predictions
using the LTM and testing of the overall accuracy of created models has not been thoroughly conducted
in many studies. Although many other computer-based models are based on similar processes and
concepts, one great asset of the LTM is that it displays the accuracy of the model while other models
typically simply specify whether inputted drivers or factors have a significant effect on urban growth.

3. Literature Gaps and Research Objective

The multiple studies conducted on urban shrinkage in the last fifty years have strongly
connected it to urban decline, structural deterioration and physical decay, employment loss, and social
exclusion [14,33–38]. The existing research, however, has not been successful to differentiate vacant
land conditions between growing and shrinking cities, nor is there a thorough body of knowledge
examining causal factors contributing to vacancies in either city type. First, most studies have focused
on demographic and economic aspects such as population changes and unemployment rate as the
primary factors increased vacant lands. However, as noted, vacant properties are actually more
numerous in growing cities than shrinking [36]. As Lang mentioned, “just because a city has fewer
residents and fewer jobs does not mean that it is experiencing decline; the issue is the composition of
those changes, their pace and the resultant distribution of costs and benefits” ([39], p. 2). The problem of
population loss is not about amount, but about who is leaving and who is staying. While some research
has examined how socio-economic status changes in a declining city, it is difficult to find much literature
on the relationships between a mix of physical, social, and economic characteristics and vacant land.
While most of the studies describe the demographic trends of a region, only a small number of existing
studies attempt to assess the statistical significance of those factors. Based on the literature, 18 primary
driving factors can be the principal causal mechanisms explaining vacancy dynamics.

In terms of computer modeling tools, LUCC models have altered drastically over the last 50 years
and machine learning has increased their reliability. However, most urban spatial prediction models
have focused on regional scaled analyses, primarily concentrating on the impacts of urban development
patterns on natural resources. Since municipal scaled predictions are rare and a model for predicting
vacant urban land has only recently been developed in 2016, more applications and testing of this
model are needed [1]. Newman et al. (2016) and Lee and Newman (2017) predicted future possible
vacancy dynamics using the LTM, but focused only on model development, calibration methods, and
accuracy assessment, not the comparison of the main determinants of vacancy [1,10]. This paper seeks
to apply the vacant land model using the LTM to (1) to project possible future vacancy pattern scenarios
(2) rank the effect of determinants of vacant land and (3) to compare the differences of influences of
vacancy in growing and shrinking cities to establish well-informed policies on the appropriate uses of
vacant properties.
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4. Methods

4.1. Study Area

In order to observe the difference of urban vacancy patterns between growing and shrinking
cities, 62 cities with a population over 250,000 as of 2000 in the United States were sorted then the
most populating and depopulating cities were identified; Honolulu, HI is excluded in the analysis.
Of these cities, from 2000 to 2010, Fort Worth, TX increased in population the most, 206,512 (+39%),
while the city of Detroit, MI lost −237,493 people (−25%) as shown in Table 1. However, Chicago,
IL, who ranked in 2nd in most depopulation cities, was chosen as a representative of shrinking cities
since decline-related issues of Chicago have tended to be relatively underestimated compared to other
declining cities such as Detroit, Cleveland, and Cincinnati.

Table 1. The List of Fastest Growing and Depopulating Cities from 2000 to 2010.

Top 5 Fastest Growing Cities Top 5 Most Depopulating Cities

City Population Change City Population Change

Fort Worth (TX) 1 206,512 (39%) Detroit (MI) −237,493 (−25%)
Charlotte (NC) 190,596 (35%) Chicago (IL) 2 −200,418 (−7%)

San Antonio (TX) 182,761 (16%) New Orleans (LA) −140,845 (−29%)
New York (NY) 166,855 (2%) Cleveland (OH) −81,588 (−17%)
Houston (TX) 145,820 (7%) Cincinnati (OH) −34,342 (−10%)

1: a representative of growing cities; 2: a representative of shrinking cities in this study.

4.2. Model Specification: The Land Transformation Model (LTM)

The LTM is capable of analyzing spatial and temporal land use dynamics as well as estimating
the impacts of urban growth alterations to forecast land use changes [29]. The LTM adapts based on
the land use/cover change (LUCC) through GIS and ANNs. Although other computer-based models
exist based on similar processes and concepts, one great asset of the LTM is a capability of quantifying
the effect of each factor through model performance.

The LTM is processed by following four sequential steps (see Figure 1). First, spatial input
layers integrated with GIS are generated, stored and managed. GIS is used to quantify historical
temporal changes in spatial patterns and forecast future possible scenarios. The grid cells of base
input layers represent land use as binary (presence = 1 or absence = 0; in this study, vacant land = 1
or occupied land = 0). Second, the predictor variables are reclassified from the input layers based on
two different transition rules in ANNs: patch size and distance from the location of a predictor cell.
Since socioeconomic variables can be obtained by census boundary (e.g., census tracts or block groups),
the variable values of all cells within the defined patches are same. The Euclidian distance formula is
used to calculate the values of transportation/street-related variables as a tool of the distance spatial
transition rule. Third, grid integration allows the ANN to learn about input layers—which are driving
factors—and output data–which refer to historical land use change patterns. There are three major
integration strategies such as ANNs, multi-criteria evaluation (MCE), and logistic regression (LR).
Each method requires a different data normalization process and there are various ways of defining
the transition rules and model structures. In this research, all cell sizes and an analysis window
are set to a fixed base layer by ANNs to provide a simulation environment using a gridded space
(raster). Lastly, temporal scaling of prediction output through a “principal index driver” (PID) is used
to determine how much land is expected to transit over a given time period. The existing literature
assumes that the transitioned number of cells will increase the same proportion based on the analysis
of historical temporal and spatial land use data [40]. This study also considers historical population
growth statistics and future projection to calculate the PID. By using both land use and population
data, it is possible to obtain more reliable future possible scenarios.
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For example, the LTM firstly identifies the change of vacant patterns from 2000 to 2010 and also
predicts 2010 vacancy pattern using 18 determinants of 2000. Then it compares the actual and projected
2010 urban vacancy pattern and adjust the weighting of each driving factor. The ANN repeatedly
runs until it can produce the same result of the actual 2010 patterns. Based on the weights learned
from 2000 to 2010, the model can project change by 2020. The time period can be changed by the
research interests.
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4.3. Variable and Data

Because variable selection greatly affects prediction outcomes, identification of factors that
determine vacant land formation is a critical task to increase the accuracy of the model. Previous
studies were carefully observed, and major four constructs were set as below. Due to these factors,
an oversupply of vacant land can hinder residential, commercial and business activities in an entire city,
and consequently, can contribute a decrease in land prices, property values and tax revenues [14,41].

• Employment Trend: deindustrialization or shifts from an industrial to service economy [42–45];
• Socio-economic Status: decreasing personal wealth [46–49];
• Household/Housing: weak market conditions and downturns [49–51]; and
• Physical Conditions and Accessibility: odd physical characteristics/location [44,47,52].

Under these four constructs, this research used three different types of input drivers to forecast
2020 vacancy patterns and quantify the influences of each factor: (1) influential variables linked to
a spatial location (referred to as input factors), (2) historical vacant land use inventories between
2000 and 2010 (referred to as input patterns, and (3) exclusionary layers which were omitted from
the analysis due to their specialized functionality (i.e., military bases, airports, public facilities, parks
and open space and existing vacant areas). 18 related input factors were selected and measured as
shown in Table 2. These 18 variables were limited by the data availability so that 15 variables for Fort
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Worth were utilized and 18 variables were used for Chicago to predict 2020 possible vacancy scenarios.
Most socioeconomic variables were collected at the census block group level retrieved from the U.S.
Census Bureau and other parcel–level data such as parcel size and transportation data (proximity to
highways and railroads) were retrieved from North Central Texas Council and Chicago Metropolitan
Agency. Then, all of input patterns and driving factors of vacant land was converted as raster data
with a resolution of 100 by 100 feet.

4.4. Model Reliability and Accuracy

Although LTM usage has risen in popularity, the model been criticized for not always being
able to provide proof of highly accurate outputs due to ineffective assessment processes during the
research process [53]. Due to this issue, it can be difficult to calibrate the contribution of these models,
making the prediction output are difficult to adapt to local circumstances and communities [19].
Thus, it is critical to improve the model’s reliability by proven assessment processes and develop an
acceptable model.

There are a few accepted methods to validate a model’s performance. For model calibration, the
goodness of fit of the neural network-based model was verified using four different sets of metrics
such as (1) Kappa coefficients, (2) percent correct metric (PCM), (3) agreement/disagreement measures,
and (4) the relative operating characteristic (ROC), comparing the cell locations between real change
and predicted change over a given time frames.

Since spatially-explicit LUCC models require a set of digital maps over at least two time periods
and then simulate transitions to produce a prediction map for a subsequent time [54], over 4000 cycles
of training are typically required to stabilize the error level to a minimum in the ANN [1]. Also,
each training session for this research was run to 250,000 cycles as the best output could be possibly
obtained with more than 250,000 cycles of training [55]. As a result of the neural network training, two
automated statistics, Kappa values and PCM were calculated every 1000 cycles. Finally, a pair of maps
from actual change and simulated model with the highest match rate was selected.

Among the accuracy assessment processes, Kappa analysis has, for a long period, been a
standard component in the conduction of accuracy assessments [56]. As Congalton and Green
stated [57], “Kappa analysis has become a standard component of most every accuracy assessment
and is considered a required component of most image analysis software packages include accuracy
assessment procedures” ([58], p. 4408). This accuracy assessment can be simply computed and easily
understood and interpreted. The Kappa statistic is calculated to measure the agreement between how
much agreement is actually present from an actual transition map compared to how much agreement
would be expected from a predicted transition map. Since the value is standardized to lie on a 0 to
1 scale showing degree of agreement, the Kappa value can be interpreted the same across multiple
studies [59]. A value of 1 implies perfect agreement, exactly what would be expected by chance for 0,
less than change agreement would equate to a negative value. Generally, values fall between 0.01 and
0.20 indicate no or slight agreement and fair agreement ranges between 0.21and 0.40. The value of
0.41 to 0.60 is considered to be moderately, from 0.61 to 0.80 as substantially, and from 0.81 to 1.00 as
almost perfectly agreed status [60–63]. Since land use maps are categorical datasets, Kappa analysis is
frequently used to compute the agreement between a pair of maps.
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Table 2. Driving Factors of Vacant Land Prediction and Related Literature for the Data Collection.

Input Factors Input Patterns Explanation References for Input Factors
Fort Worth Chicago

Unemployment Rate O O Unemployment rate of civilian population in labor force (16 years
and over)

Fee and Hartley (2011), Aryeetey-Attoh et al. (2015), and
Mallach (2012)

Service Industry O O Share of service industry to all industries Glaeser (2013), Fee and Hartley (2011), Mallach (2012), Glaeser and
Kahn (2004), Lester et al. (2014), and Cochrane et al. (2013)

Secondary Industry O O Share of Secondary industry to all industries Glaeser (2013), Fee and Hartley (2011), Mallach (2012), Glaeser & Kahn
(2004), Wegener (1982), Dong (2013), and Cochrane et al. (2013)

Household Income O O Median household income (Inflation adjusted dollars) Glaeser (2013), Fee and Hartley (2011), Ryan (2012), and
Aryeetey-Attoh et al. (2015)

Education O O Percentage of persons 25 years of age and older, with less than or
equal to high school graduate (includes equivalency)

Glaeser (2013), Fee and Hartley (2011), Mallach (2012), and Parka and
Cioricib (2015)

Poverty O O Individual Poverty Rate: Individuals below poverty= “under
0.50” + “0.50 to 0.74” + “0.75 to 0.99”).

Glaeser (2013), Fee and Hartley (2011), Ryan (2012), Parka and Cioricib
(2015), and Mallach and Brachman (2010)

Ethnicity O O Proportion of non-white Population to total population Ryan (2012), Fee and Hartley (2011), Massey and Denton (1993), Sugrue
(1996), and Hollander (2010)

Crime O Total numbers of crime that occurred in the city Kuo and Sulivan (2001), Cui and Walsh (2015). Spelman (1993), and
Jones and Pridemore (2013)

Home Ownership O O Share of owner occupied to all occupied housing units Bradfort (1979), Pond and Yeates (2013), Aryeetey-Attoh et al. (2015),
Parka and Cioricib (2015), Hoyt (1993), and Temkin and Rohe (1996)

Housing Value O O Median housing value for all owner-occupied housing units ($) Glaeser and Gyourko (2001), Capozza and Helsley (1989), Dong (2013),
Aryeetey-Attoh et al. (2015), and Hollander (2010)

Mobile Homes O Share of mobile home to all housing units Glaeser and Gyourko (2001), Capozza and Helsley (1989), Dong (2013),
Aryeetey-Attoh et al. (2015), and Hollander (2010)

Vacancy O O Vacancy rate to all housing units Dong (2013), and Mallach (2012)

Population Change O O Zero or negative population change between each period Wegener (1982), Pond and Yeates (2013), and Dong (2013)

Parcel Size O O Parcel size of lots smaller than 5000 square foot Colwell and Munneke (1997), Carrion-Flores and Irwin (2004), Pond
and Yeates (2013), and Lester, et al. (2014)

Age of Buildings O O Age of buildings built before 1950 (except buildings in historical
preservation districts) Wegener (1982)

Railroad O O Proximity to railroads Rappaport (2003), Bourne (1996), and Lester, et al. (2014)

Highway O O Proximity to highways Rappaport (2003), Bourne (1996), Dong (2013), and Lester, et al. (2014)

Accessibility O Share of no vehicle available housing units to all occupied
housing units Rappaport (2003), Bourne (1996), Dong (2013), and Lester, et al. (2014)

Number of Variables 15 18 --- ---
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Nevertheless, due to the conceptual problems and methodological flaws of the Kappa, the use
of only Kappa has shown somewhat limited. Since the Kappa score is a one-dimensional index,
the value of Kappa is not always successful to evaluate both quantity and location accuracy with
a high level of certainty in grid cells among the utilized maps [1,64]. Further, the Kappa index is able
to muddle information of the quantity of each category on the maps with the locational information of
each category on the map. Therefore, the quantity and allocation disagreement from a general map
comparison can provide additional insights [10,65].

The assessment process of PCM is relatively similar to the process of allocation disagreement.
While allocation disagreement shows the overall proportion of misallocated pixels including zero value
pixels, PCM focuses on the transited pixels having one or two values. Since the value of PCM indicates
the proportion of pixels that transition, it is used to understand the transition of the land-cover category
under investigation. Generally, the PCM result is interpreted as follows: values between 60% to 80%
accuracy indicate an exceptional model and 40% to 60% are acceptable models [60–63].

Lastly, the receiver operating characteristic (ROC) curve analysis was employed as a quantitative
measure to validate the goodness of fit of the LUCC model [66–68]. The two-class (binary classification)
prediction model has four different outcomes such as True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN). Using these four values, the sensitivity—true positive
rate—and specificity—true negative rate—is calculated based on the overall agreement cell score
outputs. Then, the sensitivity of ROC curve graphs on the x on the y-axis against 1-specificity—axis,
and the area under the ROC curve (AUC) graphically displays the overall accuracy. Values that range
between 0.70 and 0.79 indicate a fair fit, from 0.80 to 0.89 substantial, and from 0.90 to 0.99 as excellent
(1.0 is perfect) [69,70].

5. Results

5.1. Possible Scenarios of Vacancy Patterns by 2020 and LTM Output Statistics

The City of Fort Worth (2014) categorizes vacant land into three different: vacant brownfields,
vacant structures and housing units, and vacant agricultural land. According to the city’s definition,
vacant brownfields are industrial or commercial properties where redevelopments are typically
burdened by real or perceived contamination so that the area underutilized and structurally degraded.
Vacant structure and housing units include vacant buildings such as houses, apartments, mobile homes
or similar. Vacant agricultural land is an area with a lower density (i.e., one unit per acre) with limited
infrastructure (e.g., water or sewer) or without any buildings, except for living quarters for mining,
farming or grazing activities.

The City of Chicago describes vacant land differently. Vacant land is “land in an undeveloped
state, with no agricultural activities nor protection as open space” [71]. Vacant land is grouped
into four different classifications: brownfields, vacant structures/housing units, under development/
construction and vacant forested, grassland and wetlands. The definition of vacant brownfields from
Fort Worth and Chicago is same. Vacant structures/housing units contain undeveloped residential,
commercial or industrial land appraised by the county assessors. Under development/construction
land is an area with incomplete construction activities (e.g., roadway begun, partially-completed
structures, missing or incomplete landscaping), which are identified by observation of aerial imagery.
Lastly, vacant forested, grassland and wetlands refer to grassland or wetlands that exceed 2.5 acres.
Unfortunately, despite the differences in vacant land classification, there is no way to separate the data
in each classified vacant land type with existing available data. Each data file was released by simply
labeled as vacant or non-vacant.

Figure 2 shows historical vacant land pattern changes and ratios of vacant land in Fort Worth and
Chicago between 2000 and 2010 in 10-year increments (input patterns), and a possible 2020 vacant
land scenario using the LTM output. In the 1990s, large scale annexation increased the total vacant
land by 50% in Fort Worth, but the annexed vacant parcels rapidly decreased by about 12% in 2010
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due to new developments occurring on the periphery of city. In contrast, Chicago‘s total amount of
vacant land had slightly decreased from 5.9% to 5.1% between 1990 and 2000 since the population of
the city somewhat stabilized in that time period. However, as with many older industrial cities in the
U.S, the national foreclosure crisis in 2008 and depopulation trends by deindustrialization of Chicago
have also resulted in increased vacant lots and abandoned lots in recent years.
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Figure 2. 2020 Scenarios using 2000–2010 existing vacant land and input variables.

In order to minimize the error level and get the best output in the ANN, each model had over
250,000 cycles of training sessions and the results of four statistics were used to compare actual vacancy
rates and predict vacancy rates using 10-year period input patterns and input factors (See Table 3).
Results for all comparisons of both cities yielded high enough statistics to merit acceptability of all
predictions based on all accuracy assessment methods.

Table 3. LTM Statistical Output for 2000–2010.

City No. of Input
Factors

Highest Training
Probability

PCM 1

(%) Kappa 2 QD (%) AD (%) OA 3 (%) AUC 4

Fort Worth, TX 15 90,000th 54.7 0.50 0.0 9.6 90.4 0.77
Chicago, IL 18 40,000th 50.9 0.48 0.0 3.7 96.3 0.75
1 PCM: 40–60% is considered to be acceptable; 2 Kappa: the value falls between 0.41 and 0.60 refers to moderate;
3 OA (Overall agreement): more than 85% is considered to be good (OA = 100 − (QD + AD)); 4 AUC: 0.70–0.80 is
considered to be fair.

5.2. Influence of Vacancy Determinants in Two Types of Cities

As shown in Table 4, comparing the statistical output to the full model results, when dropping the
rate of secondary industry (proportion of secondary industry employees to all industries), the model
produces a higher PCM and Kappa than the full model, meaning that the factor may not be a strong
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influence to predict vacant land in Fort Worth. Since existing manufacturing and construction
industries in a growing city may not be deindustrialization, this factor may be more powerful and
influential in legacy or shrinking cities experiencing depopulation and deindustrialization. In contrast,
market conditions and socio-economic variables such as housing value and unemployment rate seemed
to be more influential compared to other factors; PCM and Kappa statistics decreased immensely when
they were removed. Surprisingly, population change was not found as the most influential factor in
predicting vacant land, while other demographic variables such as ethnicity (non-white population
rate) and personal income were actually more influential on increasing prediction accuracy than simple
population change. Physical and locational characteristic variables such as age of buildings and vehicle
accessibility had weak but positive influences. Not surprisingly, proximity to highways proved to be
a stronger impact than the proximity to railways.

In Chicago, all eighteen factors show an influence on vacancy pattern changes. When dropping
the proximity to highway and vehicle accessibility measured by percent of households with no vehicle
available, the model produces the lowest PCM and Kappa value, indicating that transportation
and accessibility-related factors had a stronger influence on the model than other factors. Further,
housing-related variables including housing value and mobile home rate also showed a stronger
influence on increasing vacant land, while personal wealth variables such as income, unemployment
rate and educational attainment seemed to be weak determinants. Since Chicago suffered more serious
shrinkage issues in the 1960s and 1970s, rapid population changes may have already occurred during
that time period. Thus, these factors may be more powerful and influential in cities which have
experienced depopulation and deindustrialization recently or in fast growing cities.

The results of influence test indicate that market condition and accessibility such as housing
value and proximity to highway are strong predictors of vacant land in both Chicago and Fort
Worth (See Table 4 and Figure 3). It is well known the fact that better access to transportation is
often considered as an amenity and contributes to increase neighborhood satisfaction [72–74]. Also,
housing price is a strong indicator of neighborhood satisfaction; the higher the price, the higher the
neighborhood satisfaction [75]. As such, a neighborhood with a lower neighborhood quality is more
likely to experience more resident’s migration resulting in more vacancy. Is it important to note that not
only do types of vacant properties change per city type, but the influence of each factor, and therefore
the determinants of vacant property, are different in growing and shrinking cities.

Table 4. Difference of Variable Influence between Fort Worth and Chicago.

Variable
City of Fort Worth City of Chicago

Diff (1)–(2)
PCM Kappa Rank Influence (1) PCM Kappa Rank Influence (2)

Unemployment 52.2 0.47 14 0.93 50.5 0.48 1 0.00 0.93
Secondary Industry * 55.1 * 0.5 1 0.00 48.9 0.46 9 0.47 0.47

Service Industry 54.4 0.49 4 0.21 49.9 0.47 3 0.12 0.10
Income 52.6 0.47 12 0.79 50.1 0.47 2 0.06 0.73

Education 53.5 0.48 9 0.57 49.8 0.47 4 0.18 0.39
Poverty 54.7 0.49 2 0.07 49.0 0.46 7 0.35 0.28

Ethnicity 52.6 0.47 13 0.86 48.6 0.46 11 0.59 0.27
Crime - - - 48.3 0.46 13 0.71 -

Ownership 53.5 0.48 7 0.43 49.6 0.47 5 0.24 0.19
Housing Value 47.8 0.42 15 1.00 47.9 0.45 14 0.76 0.24
Mobile Homes - - - 46.0 0.43 16 0.88 -

Vacant Rate 53.5 0.48 8 0.50 47.8 0.45 15 0.82 0.32
Population Change 52.7 0.47 11 0.71 49.3 0.47 6 0.29 0.42

Parcel Size 54.3 0.49 5 0.29 48.9 0.46 8 0.41 0.13
Built Year 54.5 0.49 3 0.14 48.6 0.46 12 0.65 0.50
Railroads 53.5 0.48 6 0.36 48.7 0.46 10 0.53 0.17

Accessibility - - - 45.8 0.43 17 0.94 -
Highway 53.1 0.48 10 0.64 45.5 0.43 18 1.00 0.36

Full Model 54.7 0.50 50.9 0.48

* Producing higher PCM and Kappa outputs than the full model.
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In contrast to findings of previous literature, unemployment rate, income, and ethnicity were
less critical factors on urban vacancy in shrinking cities, but those factors are shown as important in
growing cities. This may be because Chicago has experienced serious depopulation and economic
downturn over the past 60 years, with population movement stabilizing only recently. On the other
hand, Chicago may face a deeper problem of increasing economic segregation and rapid demographic
changes, leading to a growing amount of vacancy in declining neighborhoods. Inversely, small parcel
size and low home ownership rate seemed to have a weak influence on vacancy prediction.

Not surprisingly, secondary industry appeared to be more influential in Chicago where many
existing manufacturing industries have been deindustrializing than in Fort Worth, while service
industry (proportion of service industry to all industries) proved to be less influential than secondary
industry in predicting vacant land in both cities. This may be because continuous deindustrialization
of manufacturing industries may influence depopulation and increase vacant land more strongly
shrinking cities. However, the statistical outputs suggest that secondary industry is influential, though
only marginally. Since the mass deindustrialization of Chicago began from the 1960s into the 1980s,
secondary industry may be more influential if the variable influence test was conducted using input
drivers in the 1960s or 70s.

Poverty rate also had a stronger influence in Chicago than Fort Worth. Since depopulating
and deindustrializing neighborhoods with higher poverty rates typically have a lower potential
future economic growth, increased poverty is related to joblessness, and can therefore contribute
to depopulation.

6. Discussion

This research sought to use a proven land use prediction model to simulate vacant land changes
in shrinking and growing cities in order to differentiate causal predictive factors for reach city type.
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To summarize findings from observations and analyses, several interesting trends were revealed. First,
the LTM has shown that both Fort Worth and Chicago scenarios in this study have sufficiently high
accuracy outputs to merit the acceptability of predictions. To minimize the error and produce the best
result, more than 250,000 cycles of trainings were performed for each model and the results of four
statistics were used to compare actual vacancy rates and predict vacancy rates using 10-year input
patterns and input factors. Results for all comparisons of both cities produced acceptable statistics
to merit the acceptability of predictions. Each model has high enough Kappa coefficients and PCM’s
(40% or more) with fair to good AUC outputs (between 0.70 and 0.80) and thus, all models have high
level of agreement.

Second, the variable influence test outputs indicate that housing market condition and accessibility
such as housing value, land value and proximity to highway more strongly influence both Chicago
and Fort Worth than other factors. Surprisingly, in contrast to previous literature which suggest racial
and economic segregation as prominent issues in shrinking cities, most socio-economic variables
such as unemployment rate, ethnicity, income and educational attainment in the shrinking city
seemed to be less influential than in the growing city. This may be partially due to Chicago’s history
of depopulation and economic downturn over the past 60 years and its current stabilization of
demographic transformation and vacant land patterns. This condition presents different circumstances
than growing cities or cities that have recently experienced depopulation as a result of increasing
economic, social and racial segregation and rapid demographic changes. Socioeconomic variables
would probably have had a stronger influence if this research had used data from the 1960s or 70s
from Chicago. Secondary industry seemed to be a stronger predictor of vacant land in the shrinking
city. This finding make sense because Chicago is where many existing manufacturing and construction
industries have deindustrialized in comparison. Since the processes of analyses provide not only
statistical and visualized results, this research allows local governments the ability to understand
what factors have accelerated/decelerated urban shrinkage, how vacant land patterns have changed,
which areas have a possibility of vacancy in the future, and which areas are the most at risk for
future decline.

Despite the merits of this study, some limitations are remained that should be furthered in
the future study. First, this study is focused only on Fort Worth and Chicago and the relatively
small sample size may lack enough statistical power to generalize conclusions to all municipalities.
Second, definitions and measurement of vacant land differ between cities. For example, brownfields
and vacant structure/housing units are classified as vacant land in both Chicago and Fort Worth.
However, while Chicago includes underdevelopment/construction and vacant grassland/wetlands
with more than 2.5 acres of land as vacant land, Fort Worth includes only vacant agricultural, which
are areas with one residential unit per structure on more than 1 acres. Since it is difficult to directly
compare the vacancy changes between the cities having different definitions and classifications, models
performed on multiple cities can be distorted depending on the inconsistent classifications of vacant
land. Furthermore, vacant properties are not always a negative trait of cities, and since it is impossible
to account for the value of vacant properties, the positive aspects and characteristics of the vacant
properties such as natural resource worth could be overlooked. Fourth, since LTM modeling is
a complicated GIS and ANNs-based tool, it requires long training times for reliable outputs. Therefore,
it would be hard to directly apply LTM when planners are not fully familiar with the program’s tools
and extensions.

7. Conclusions

Overall, this study strived to predict future possible vacancy scenarios in a growing city and
shrinking city, and quantify the influence of each driving factor and provide initial solutions that
can be utilized in future projects. This study has not only supported methodological frameworks
of LUCC models but has also explored theoretical and practical connections between planning and
policy implementation. However, this is only a starting point to understanding the overall vacant
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land transformation. Further research is needed to extend study areas, define key terminologies,
collect better data and provide more applicable policy implications. First of all, the study area needs
to be extended to other communities facing serious depopulation and deindustrialization and/or
experiencing rapid growth in size/population. Second, to reduce the uncertainty of model outputs, it
is necessary to improve and monitor inventory of vacant land conditions and specific data related to
input factors such as parcel value or under-constructed structure data. Lastly, future LTM research
must have practical connections with policy makers and generate roadmaps for policy direction on
vacant land.
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