Next Article in Journal
Semi-solid Sucrose Stearate-Based Emulsions as Dermal Drug Delivery Systems
Next Article in Special Issue
Advances in Bio-Optical Imaging for the Diagnosis of Early Oral Cancer
Previous Article in Journal
Design, Synthesis, and Biological Evaluation of PKD Inhibitors
Previous Article in Special Issue
First Quantitative Imaging of Organic Fluorine within Angiogenic Tissues by Particle Induced Gamma-Ray Emission (PIGE) Analysis: First PIGE Organic Fluorine Imaging
Pharmaceutics 2011, 3(2), 229-274; doi:10.3390/pharmaceutics3020229

Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research

1, 2,*  and 1,3,*
1 Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland 2 Institute of Electronic Structure and Laser - FORTH, Vassilika Vouton, 71110 Heraklion, Greece 3 Institute of Pharmacology and Toxicology, University Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
* Authors to whom correspondence should be addressed.
Received: 6 February 2011 / Revised: 7 April 2011 / Accepted: 15 April 2011 / Published: 26 April 2011
(This article belongs to the Special Issue Molecular Imaging)
View Full-Text   |   Download PDF [5913 KB, 27 April 2011; original version 26 April 2011]   |   Browse Figures


Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue’s optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development.
Keywords: fluorescence molecular tomography; biomedical imaging; optical tomography; fluorescence; hybrid imaging fluorescence molecular tomography; biomedical imaging; optical tomography; fluorescence; hybrid imaging
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
MDPI and ACS Style

Stuker, F.; Ripoll, J.; Rudin, M. Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research. Pharmaceutics 2011, 3, 229-274.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here


[Return to top]
Pharmaceutics EISSN 1999-4923 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert