Effects of Opioid Withdrawal on Psychobiology in People Living with HIV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting
2.3. Participants
2.4. Study Assessments
2.5. Neurocognitive Assessment
2.6. Mood and Withdrawal Assessments
2.7. Neuroendocrine Immunoassay Methods
2.8. HIV RNA and Immune Activation Methods
2.9. Statistical Analyses
3. Results
3.1. Demographics
3.2. Cognitive and Behavioral Changes over Time
3.3. Medication Use Associations with Cortisol/DHEA-S, IL-6, and sCD14
3.4. Association between Cortisol/DHEA-S and IL-6, sCD14
3.5. Association between Cortisol/DHEA-S and Cognition
3.6. Association between IL-6 and Cognition
3.7. Association between sCD14 and Cognition
3.8. Association between Cortisol/DHEA-S, IL-6, sCD14 and POMS
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Degenhardt, L.; Peacock, A.; Colledge, S.; Leung, J.; Grebely, J.; Vickerman, P.; Stone, J.; Cunningham, E.B.; Trickey, A.; Dumchev, K.; et al. Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: A multistage systematic review. Lancet Glob. Health 2017, 5, e1192–e1207. [Google Scholar] [CrossRef] [PubMed]
- Ancuta, P.; Kamat, A.; Kunstman, K.J.; Kim, E.-Y.; Autissier, P.; Wurcel, A.; Zaman, T.; Stone, D.; Mefford, M.; Morgello, S.; et al. Microbial Translocation Is Associated with Increased Monocyte Activation and Dementia in AIDS Patients. PLoS ONE 2008, 3, e2516. [Google Scholar] [CrossRef] [PubMed]
- Friedman, H.; Newton, C.; Klein, T.W. Microbial infections, immunomodulation, and drugs of abuse. Clin. Microbiol. Rev. 2003, 16, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Cebra, J.J.; Adler, M.W.; Meissler, J.J., Jr.; Cowan, A.; Feng, P.; Eisenstein, T.K. Morphine inhibits mucosal antibody responses and TGF-beta mRNA in gut-associated lymphoid tissue following oral cholera toxin in mice. J. Immunol. 2001, 167, 3677–3681. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zheng, P. Dehydroepiandrosterone sulphate: Action and mechanism in the brain. J. Neuroendocrinol. 2012, 24, 215–224. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Interacting mediators of allostasis and allostatic load: Towards an understanding of resilience in aging. Metabolism 2003, 52 (Suppl. S2), 10–16. [Google Scholar] [CrossRef]
- Wolkowitz, O.M.; Reus, V.I.; Mellon, S.H. Of sound mind and body: Depression, disease, and accelerated aging. Dialogues Clin. Neurosci. 2011, 13, 25–39. [Google Scholar] [CrossRef]
- Kalimi, M.; Shafagoj, Y.; Loria, R.; Padgett, D.; Regelson, W. Anti-glucocorticoid effects of dehydroepiandrosterone (DHEA). Mol. Cell. Biochem. 1994, 131, 99–104. [Google Scholar] [CrossRef]
- Prall, S.P.; Muehlenbein, M.P. DHEA Modulates Immune Function: A Review of Evidence. Vitam. Horm. 2018, 108, 125–144. [Google Scholar]
- Moriguchi, S.; Yamamoto, Y.; Ikuno, T.; Fukunaga, K. Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice. J. Neurochem. 2011, 117, 879–891. [Google Scholar] [CrossRef]
- Park-Chung, M.; Malayev, A.; Purdy, R.H.; Gibbs, T.T.; Farb, D.H. Sulfated and unsulfated steroids modulate gamma-aminobutyric acidA receptor function through distinct sites. Brain Res. 1999, 830, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Lapchak, P.A.; Araujo, D. M Preclinical development of neurosteroids as neuroprotective agents for the treatment of neurodegenerative diseases. Int. Rev. Neurobiol. 2001, 46, 379–397. [Google Scholar] [PubMed]
- Liou, C.J.; Huang, W.C. Dehydroepiandrosterone suppresses eosinophil infiltration and airway hyperresponsiveness via modulation of chemokines and Th2 cytokines in ovalbumin-sensitized mice. J. Clin. Immunol. 2011, 31, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hao, Q.; Wang, Y.D.; Wang, W.J.; Li, D.J. Protective effects of dehydroepiandrosterone on atherosclerosis in ovariectomized rabbits via alleviating inflammatory injury in endothelial cells. Atherosclerosis 2011, 214, 47–57. [Google Scholar] [CrossRef]
- Christeff, N.; Gherbi, N.; Mammes, O.; Dalle, M.T.; Gharakhanian, S.; Lortholary, O.; Melchior, J.C.; Nunez, E.A. Serum cortisol and DHEA concentrations during HIV infection. Psychoneuroendocrinology 1997, 22 (Suppl. S1), S11–S18. [Google Scholar] [CrossRef]
- Clerici, M.; Galli, M.; Bosis, S.; Gervasoni, C.; Moroni, M.; Norbiato, G. Immunoendocrinologic abnormalities in human immunodeficiency virus infection. Ann. N. Y. Acad. Sci. 2000, 917, 956–961. [Google Scholar] [CrossRef]
- Wisniewski, T.L.; Hilton, C.W.; Morse, E.V.; Svec, F. The relationship of serum DHEA-S and cortisol levels to measures of immune function in human immunodeficiency virus-related illness. Am. J. Med. Sci. 1993, 305, 79–83. [Google Scholar] [CrossRef]
- Maingat, F.G.; Polyak, M.J.; Paul, A.M.; Vivithanaporn, P.; Noorbakhsh, F.; Ahboucha, S.; Baker, G.B.; Pearson, K.; Power, C. Neurosteroid-mediated regulation of brain innate immunity in HIV/AIDS: DHEA-S suppresses neurovirulence. FASEB J. 2013, 27, 725–737. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Z.; Lei, Z.; Lei, P. CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019, 48, 24–31. [Google Scholar] [CrossRef]
- Lehnardt, S.; Massillon, L.; Follett, P.; Jensen, F.E.; Ratan, R.; Rosenberg, P.A.; Volpe, J.J.; Vartanian, T. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl. Acad. Sci. USA 2003, 100, 8514–8519. [Google Scholar] [CrossRef]
- HHickman, S.; Izzy, S.; Sen, P.; Morsett, L.; El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci. 2018, 21, 1359–1369. [Google Scholar] [CrossRef] [PubMed]
- Schlachetzki, J.C.; Zhou, Y.; Glass, C.K. Human microglia phenotypes in the brain associated with HIV infection. Curr. Opin. Neurobiol. 2022, 77, 102637. [Google Scholar] [CrossRef] [PubMed]
- Sreeram, S.; Ye, F.; Garcia-Mesa, Y.; Nguyen, K.; El Sayed, A.; Leskov, K.; Karn, J. The potential role of HIV-1 latency in promoting neuroinflammation and HIV-1-associated neurocognitive disorder. Trends Immunol. 2022, 43, 630–639. [Google Scholar] [CrossRef]
- Navaline, H.A.; Snider, E.C.; Petro, C.J.; Tobin, D.; Metzger, D.; Alterman, A.I.; Woody, G.E. Preparations for AIDS vaccine trials. An automated version of the Risk Assessment Battery (RAB): Enhancing the assessment of risk behaviors. AIDS Res. Hum. Retroviruses 1994, 10 (Suppl. S2), S281–S283. [Google Scholar] [PubMed]
- Heaton, R.K.; Taylor, M.J.; Manly, J.J. Demographic effects and use of demographically corrected norms with the WAIS-III and WMS-III. In Clinical Interpretation of the WAIS-III and WMS-III; Tulsky, D., Saklofske, D., Heaton, R.K., Chelune, G., Ivnik, R., Bornstein, R.A., Ledbetterm., M.F., Prifitera, A., Eds.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- D’Elia, L.F.; Satz, P.; Uchiyama, C.L.; White, T. Color Trails Test—Professional Manual; Psychological Assessment Resources, Inc.: Odessa, FL, USA, 1996. [Google Scholar]
- Diehr, M.C.; Cherner, M.; Wolfson, T.J.; Miller, S.W.; Grant, I.; Heaton, R.K. The 50 and 100-item short forms of the Paced Auditory Serial Addition Task (PASAT): Demographically corrected norms and comparisons with the full PASAT in normal and clinical samples. J. Clin. Exp. Neuropsychol. 2003, 25, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.; Benedict, R. Hopkins Verbal Learning Test-Revised: Professional Manual; Psychological Assessment Resources, Inc.: Lutz, FL, USA, 2001. [Google Scholar]
- Benedict, R. Brief Visuospatial Memory Test-Revised; Psychological Assessment Resources, Inc.: Odessa, FL, USA, 1997. [Google Scholar]
- Heaton, R.; Miller, S.; Taylor, M.; Grant, I. Revised Comprehensive Norms for an Expanded Halstead-Reitan Battery: Demographically Adjusted Neuropsychological Norms for African American and Caucasian Adults; Psychological Assessment Resources: Lutz, FL, USA, 2004. [Google Scholar]
- Woods, S.P.; Scott, J.C.; Sires, D.A.; Grant, I.; Heaton, R.K.; Troster, A.I. Action (verb) fluency: Test-retest reliability, normative standards, and construct validity. J. Int. Neuropsychol. Soc. 2005, 11, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Klove, H. Grooved Pegboard; Lafayette Instruments: Lafayette, IN, USA, 1963. [Google Scholar]
- McNair, D.M.; Loor, M.; Droppleman, L. Profile of Mood Stats—Manual; Educational and Institutional Testing Service: San Diego, CA, USA, 1971. [Google Scholar]
- Wesson, D.R.; Ling, W. The Clinical Opiate Withdrawal Scale (COWS). J. Psychoact. Drugs 2003, 35, 253–259. [Google Scholar] [CrossRef]
- Taiwo, B.M.; Hunt, P.W.; Gandhi, R.T.; Ellingson, A.; McKenna, M.; Jacobson, J.M.; Gripshover, B.; Bosch, R.J. CD8+ T-Cell Activation in HIV-1–Infected Patients Experiencing Transient Low-level Viremia During Antiretroviral Therapy. Am. J. Ther. 2013, 63, 101–104. [Google Scholar] [CrossRef]
- Hunt, P.W.; Brenchley, J.; Sinclair, E.; McCune, J.M.; Roland, M.; Page-Shafer, K.; Hsue, P.; Emu, B.; Krone, M.; Lampiris, H.; et al. Relationship between T Cell Activation and CD4+T Cell Count in HIV-Seropositive Individuals with Undetectable Plasma HIV RNA Levels in the Absence of Therapy. J. Infect. Dis. 2008, 197, 126–133. [Google Scholar] [CrossRef]
- Longenecker, C.; Funderburg, N.; Jiang, Y.; Debanne, S.; Storer, N.; Labbato, D.; Lederman, M.; McComsey, G. Markers of inflammation and CD8 T-cell activation, but not monocyte activation, are associated with subclinical carotid artery disease in HIV-infected individuals. HIV Med. 2013, 14, 385–390. [Google Scholar] [CrossRef]
- Zanni, M.V.; Grinspoon, S.K. HIV-specific immune dysregulation and atherosclerosis. Curr. HIV/AIDS Rep. 2012, 9, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Erlandson, K.M.; Allshouse, A.A.; Jankowski, C.M.; Lee, E.J.; Rufner, K.M.; Palmer, B.E.; Wilson, C.C.; MaWhinney, S.; Kohrt, W.M.; Campbell, T.B. Association of Functional Impairment with Inflammation and Immune Activation in HIV Type 1–Infected Adults Receiving Effective Antiretroviral Therapy. J. Infect. Dis. 2013, 208, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Schielzeth, H. A general ands simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2012, 4, 133–142. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Pinheiro, J.; Bates, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-157; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- de Souza-Talarico, J.N.; Marin, M.-F.; Sindi, S.; Lupien, S.J. Effects of stress hormones on the brain and cognition: Evidence from normal to pathological aging. Dement. Neuropsychol. 2011, 5, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Qassem, M.; Kyriacou, P.A. Measuring stress: A review of the current cortisol and dehydroepiandrosterone (DHEA) measurement techniques and considerations for the future of mental health monitoring. Stress 2023, 26, 29–42. [Google Scholar] [CrossRef]
- Kalmijn, S.; Launer, L.J.; Stolk, R.P.; de Jong, F.H.; Pols, H.A.; Hofman, A.; Breteler, M.M.; Lamberts, S.W. A prospective study on cortisol, dehydroepiandrosterone sulfate, and cognitive function in the elderly. J. Clin. Endocrinol. Metab. 1998, 83, 3487–3492. [Google Scholar] [CrossRef]
- Young, A.H.; Gallagher, P.; Porter, R.J. Elevation of the cortisol-dehydroepiandrosterone ratio in drug-free depressed patients. Am. J. Psychiatry 2002, 159, 1237–1239. [Google Scholar] [CrossRef]
- Diaz-Jimenez, D.; Kolb, J.P.; Cidlowski, J.A. Glucocorticoids as Regulators of Macrophage-Mediated Tissue Homeostasis. Front. Immunol. 2021, 12, 669891. [Google Scholar] [CrossRef]
- Nockher, W.A.; Scherberich, J.E. Expression and release of the monocyte lipopolysaccharide receptor antigen CD14 are suppressed by glucocorticoids in vivo and in vitro. J. Immunol. 1997, 158, 1345–1352. [Google Scholar] [CrossRef]
- Chang, W.T.; Hong, M.Y.; Chen, C.L.; Hwang, C.Y.; Tsai, C.C.; Chuang, C.C. Mutant glucocorticoid receptor binding elements on the interleukin-6 promoter regulate dexamethasone effects. BMC Immunol. 2021, 22, 24. [Google Scholar] [CrossRef]
Cognitive Domain | Test |
---|---|
Attention/Speed of Information Processing | Digit Symbol/Coding subtest from Wechsler Adult Intelligence Scale-III (WAIS-III) [25] Color Trails Test 1 [26] Paced Auditory Serial Addition Test (PASAT-50) [27] |
Memory (learning and recall of verbal and nonverbal/visual information) | Hopkins Verbal Learning Test—Revised [28] Brief Visuospatial Memory Test—Revised [29] |
Executive Functioning | Color Trails Test 2 [26] |
Verbal Fluency | Category Fluency (Animals) [30] Action Fluency [31] |
Motor speed and coordination | Grooved Pegboard Test (Dominant and Non-dominant) [32] |
Variable | Mean (SD) or N (%) | Range | N (%) Missing |
---|---|---|---|
Age (years) | 34.7 (4.45) | 23.0–46.0 | 0 (0%) |
Female sex | 6 (11.3%) | 0 (0%) | |
Education (years) | 11.3 (1.91) | 7.0–17.0 | 0 (0%) |
Log10 HIV VL | 4.38 [4.08, 4.61] | 2.70–4.98 | 0 (0%) |
HIV VL ≤ 500 | 12 (22.6%) | 0 (0%) | |
CD4 Count | 272 (154) | 40–654 | 21 (39.6%) |
HBV | 1 (1.9%) | 1 (1.9%) | |
HCV | 49 (96.1%) | 2 (3.8%) | |
Syphilis | 1 (1.9%) | 1 (1.9%) | |
WBC | 6.00 [4.50, 7.69] | 2.90–49.00 | 2 (3.8%) |
RBC | 4.60 [4.34, 5.00] | 3.26–14.30 | 2 (3.8%) |
HGB | 140 [132, 153] | 17–167 | 2 (3.8%) |
PLT | 173 [143, 249] | 14–350 | 3 (5.7%) |
LYM | 31.1 [19.5, 41.3] | 1.2–56.5 | 3 (5.7%) |
MON | 4.62 [3.48, 5.90] | 0.32–378.00 | 9 (17%) |
RDW | 12.3 [11.2, 13.7] | 4.8–47.2 | 5 (9.4%) |
MPV | 7.70 [6.50, 8.94] | 4.30–19.90 | 6 (11.3%) |
Total Protein | 77.1 [71.1, 82.2] | 55.9–103.7 | 3 (5.7%) |
Total Bilirubin | 8.40 [5.53, 13.70] | 1.80–55.90 | 3 (5.7%) |
Direct Bilirubin | 6.25 [3.17, 8.65] | 1.10–10.60 | 47 (88.7%) |
Cholesterol | 3.30 [2.90, 4.10] | 2.10–4.70 | 24 (45.3%) |
AST | 43.7 [24.5, 64.5] | 4.3–309.0 | 2 (3.8%) |
ALT | 37.8 [21.5, 61.1] | 5.7–160.0 | 3 (5.7%) |
Glucose | 5.04 [4.48, 5.50] | 2.82–7.30 | 5 (9.4%) |
Marijuana Utox+ | 0 (0%) | 0 (0%) | |
Cocaine Utox+ | 0 (0%) | 0 (0%) | |
Morphine Utox+ | 40 (75.5%) | 0 (0%) | |
Methadone Utox+ | 40 (75.5%) | 0 (0%) | |
Methamphetamine Utox+ | 0 (0%) | 0 (0%) | |
Amphetamine Utox+ | 0 (0%) | 0 (0%) |
Log10 Cortisol/DHEA | Cortisol | zlog10 IL-6 # | zlog10 sCD14 # | |||||
---|---|---|---|---|---|---|---|---|
Medication Use | Coef. (SE) | p | Coef. (SE) | p | Coef. (SE) | p | Coef. (SE) | p |
Clonidine | 0.237 (0.073) | 0.002 | 222 (68) | 0.002 | 0.512 (0.353) | 0.154 | 0.043 (0.306) | 0.890 |
Chlorprothixene | 0.099 (0.106) | 0.354 | −3 (100) | 0.973 | −0.277 (0.323) | 0.396 | −0.187 (0.306) | 0.545 |
Droperidol | 0.171 (0.082) | 0.043 | 155 (77) | 0.051 | 0.458 (0.279) | 0.108 | 0.771 (0.243) | 0.003 |
Antipsychotics | 0.207 (0.097) | 0.039 | 106 (94) | 0.263 | 0.383 (0.309) | 0.221 | 0.782 (0.273) | 0.006 |
log10 Cortisol/DHEA | zlog10 IL-6 | zlog10 sCD14 | |||||||
---|---|---|---|---|---|---|---|---|---|
Outcome (Scaled Score) | Coefficient (SE) | p | adj. p | Coefficient (SE) | p | adj. p | Coefficient (SE) | p | adj. p |
Global Mean | −1.110 (0.470) | 0.020 | -- | −0.147 (0.108) | 0.178 | -- | 0.335 (0.173) | 0.057 | -- |
Learning Domain | −0.816 (0.547) | 0.139 | 0.185 | −0.303 (0.125) | 0.017 | 0.070 | 0.178 (0.203) | 0.381 | 0.381 |
BVMT-R Learning | −1.234 (0.639) | 0.057 | 0.264 | −0.177 (0.155) | 0.256 | 0.565 | 0.316 (0.241) | 0.193 | 0.465 |
HVLT-R Learning | −0.645 (0.745) | 0.389 | 0.486 | −0.429 (0.171) | 0.014 | 0.139 | −0.039 (0.272) | 0.885 | 0.885 |
Memory Domain | −1.039 (0.655) | 0.116 | 0.185 | −0.234 (0.154) | 0.133 | 0.266 | 0.272 (0.234) | 0.249 | 0.332 |
BVMT-R Delayed Recall | −0.876 (0.765) | 0.255 | 0.364 | −0.175 (0.179) | 0.332 | 0.565 | 0.364 (0.268) | 0.178 | 0.465 |
HVLT-R Delayed Recall | −1.249 (0.793) | 0.119 | 0.264 | −0.293 (0.191) | 0.128 | 0.428 | 0.154 (0.288) | 0.593 | 0.709 |
Motor Domain | −1.822 (0.799) | 0.025 | 0.100 | −0.060 (0.186) | 0.748 | 0.748 | 0.434 (0.295) | 0.145 | 0.332 |
Grooved Pegboard—Dominant Hand | −1.279 (0.841) | 0.132 | 0.264 | 0.030 (0.196) | 0.878 | 0.964 | 0.339 (0.308) | 0.273 | 0.465 |
Grooved Pegboard—Non-Dominant Hand | −2.375 (0.823) | 0.005 | 0.049 | −0.151 (0.193) | 0.437 | 0.565 | 0.516 (0.307) | 0.097 | 0.465 |
Verbal Domain | −0.310 (0.528) | 0.558 | 0.558 | 0.067 (0.117) | 0.570 | 0.748 | 0.252 (0.198) | 0.206 | 0.332 |
Animal Fluency | −0.418 (0.664) | 0.531 | 0.545 | 0.007 (0.156) | 0.964 | 0.964 | 0.275 (0.253) | 0.279 | 0.465 |
Action Fluency | −0.433 (0.712) | 0.545 | 0.545 | 0.119 (0.157) | 0.452 | 0.565 | 0.153 (0.263) | 0.562 | 0.709 |
WAIS-III Digit Symbol * | −0.966 (0.557) | 0.086 | 0.264 | −0.256 (0.124) | 0.042 | 0.208 | 0.652 (0.228) | 0.005 | 0.053 |
PASAT-50 | −1.147 (0.815) | 0.163 | 0.272 | −0.160 (0.190) | 0.403 | 0.565 | 0.142 (0.301) | 0.638 | 0.709 |
log10 Cortisol/DHEA | zlog10 IL-6 | zlog10 sCD14 | |||||||
---|---|---|---|---|---|---|---|---|---|
POMS Scores | Coefficient (SE) | p | adj. p | Coefficient (SE) | p | adj. p | Coefficient (SE) | p | adj. p |
Total Score | 9.86 (8.74) | 0.261 | -- | 1.76 (1.73) | 0.314 | -- | −4.87 (2.81) | 0.086 | -- |
Tension/Anxiety | −1.32 (1.56) | 0.400 | 0.480 | −0.26 (0.36) | 0.480 | 0.697 | −0.67 (0.55) | 0.230 | 0.460 |
Depression/Dejection | 6.03 (2.81) | 0.035 | 0.105 | 0.72 (0.58) | 0.219 | 0.656 | −0.83 (1.10) | 0.455 | 0.683 |
Anger/Hostility | 3.61 (1.18) | 0.003 | 0.018 | 0.37 (0.22) | 0.105 | 0.631 | −0.07 (0.45) | 0.886 | 0.886 |
Vigor/Activation | −1.42 (1.50) | 0.347 | 0.480 | −0.20 (0.36) | 0.581 | 0.697 | 0.29 (0.56) | 0.607 | 0.728 |
Fatigue/Inertia | 0.25 (1.58) | 0.873 | 0.873 | 0.06 (0.37) | 0.876 | 0.876 | −0.89 (0.56) | 0.117 | 0.350 |
Confusion/Bewilderment | 1.99 (1.22) | 0.107 | 0.213 | 0.24 (0.26) | 0.356 | 0.697 | −1.01 (0.42) | 0.018 | 0.111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grant, I.; Krupitsky, E.; Vetrova, M.; Umlauf, A.; Heaton, R.K.; Hauger, R.L.; Toussova, O.; Franklin, D.R.; Letendre, S.L.; Woody, G.; et al. Effects of Opioid Withdrawal on Psychobiology in People Living with HIV. Viruses 2024, 16, 92. https://doi.org/10.3390/v16010092
Grant I, Krupitsky E, Vetrova M, Umlauf A, Heaton RK, Hauger RL, Toussova O, Franklin DR, Letendre SL, Woody G, et al. Effects of Opioid Withdrawal on Psychobiology in People Living with HIV. Viruses. 2024; 16(1):92. https://doi.org/10.3390/v16010092
Chicago/Turabian StyleGrant, Igor, Evgeny Krupitsky, Marina Vetrova, Anya Umlauf, Robert K. Heaton, Richard L. Hauger, Olga Toussova, Donald R. Franklin, Scott L. Letendre, George Woody, and et al. 2024. "Effects of Opioid Withdrawal on Psychobiology in People Living with HIV" Viruses 16, no. 1: 92. https://doi.org/10.3390/v16010092